• Title/Summary/Keyword: Piezoelectric d constant

Search Result 223, Processing Time 0.027 seconds

Optical and Mechanical Characteristics of NF System and NF Gap Control (근접장 광학계의 광학적 및 기계적 특성 분석과 근접장 간격제어)

  • Oh, Hyeong-Ryeol;Lee, Jun-Hee;Gweon, Dae-Gab;Kim, Soo-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1528-1532
    • /
    • 2000
  • The conventional optics and near field optics are compared numerically in the view points of the spot size and propagation characteristics. The decaying characteristics of near field light require the optics to access the object within several tens of nanometers. Therefore the gap control is one of the main issues in the near field optics area. In this paper the gap control is done by using the shear force of the NF(Near Field) probe and the characteristics are examined. The probe is modeled as a 2'nd order mass-spring-damper system driven by a harmonic force. The primary cause of the decrease in vibration amplitude is due to the damping force - shear force - between the surface and the probe. Using the model, damping constant and resonance frequency of the probe is calculated as a function of probe-sample distance. Detecting the amplitude and phase shift of the NF probe attached to the high Q-factor piezoelectric tuning fork, we can control the position of the NF probe about 0 to 50nm above the sample. The feedback signal to regulate the probe-sample distance can be used independently for surface topography imaging. 3-D view of the shear force image of a testing sample with the period of $1{\mu}m$ will be shown.

  • PDF

Enhancement of electromechanical properties in lead-free (1-x)K0.5Na0.5O3-xBaZrO3 piezoceramics

  • Duong, Trang An;Nguyen, Hoang Thien Khoi;Lee, Sang-Sub;Ahn, Chang Won;Kim, Byeong Woo;Lee, Jae‒Shin;Han, Hyoung‒Su
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.408-414
    • /
    • 2021
  • This study analyzes the phase transition behavior and electrical properties of lead-free (1-x)K0.5Na0.5NbO3-xBaZrO3 (KNN-100xBZ) piezoelectric ceramics. The stabilized crystal structures in BaZrO3-modified KNN ceramics is clarified to be pseudocubic. The polymorphic phase transition from the orthorhombic to pseudocubic phases can be observed with KNN-6BZ ceramics considering the optimized piezoelectric constant (d33). Electromechanical strain behaviors are discussed. Accordingly, the enhancement of strain value at x = 0.08 (composition) may originate from the coexistence of ferroelectric domains and polar nanoregions. A schematic of domains for KNN, KNN-8BZ, and KNN-15BZ ceramics has been proposed to describe the relationship between the stabilized relaxor and changes in electrical properties.

Dielectric and Piezoelectric Properties of Lead-free (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Ceramics (비납계 (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 세라믹의 유전 및 압전 특성)

  • Cho J. A.;Kuk M.-H.;Sung Y. S.;Lee S. H.;Song T. K.;Jeong S. J.;Song J. S.;Kim M.-H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.639-643
    • /
    • 2005
  • Lead-free $[Bi_{0.5}(Na_{1-x}K_x)_{0.5}TiO_3](x=0\~1.0)$ ceramics were prepared using a solid state reaction method and their structural and electrical characteristics were investigated. X-ray investigations indicated that the rhombohedral-tetragonal morphotropic phase boundary(MPB) of the $[Bi_{0.5}(Na_{1-x}K_x)TiO_3$ ceramics exists in the range of $x=0.16\~0.20$. The optimum values of piezoelectric constant$(d_{33})$, dielectric constant, and electromechanical coupling factor $(k_p)$ were obtained at $x=0.16\~0.20$ of the MPB region.

Electrical Properties of $Bi_4Ti_3O_{12}$ Thin Films dependant on Oxygen Partial Pressure during Annealing (열처리 산소 분압에 따른 $Bi_4Ti_3O_{12}$ 박막의 전기적 특성 변화)

  • Cha, Yu-Jeong;Nahm, Sahn;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.191-191
    • /
    • 2009
  • $Bi_4Ti_3O_{12}$ (BiT) thin films were well developed on the Pt/Ti/$SiO_2/Si$ substrate by a metal organic decomposition (MOD) method. Oxygen was effective on the crystallization of the BiT thin films during a rapid thermal annealing process. The electrical properties of the BiT films dependant on the oxygen partial pressure were investigated. No crystalline phase was observed for the BiT film annealed at $700^{\circ}C$ under oxygen free atmosphere. However, its crystallinity was significantly evolutionned with increasing oxygen partial pressure. In addition, its dielectric and piezoelectric properties were enhanced with increasing oxygen partial pressure to 10 torr. Especially, the BiT film, annealed at $700^{\circ}C$ and 10 torr oxygen pressure, showed good dielectric properties: dielectric constant of 51 and dielectric loss of 0.2 % at 100 kHz. Its leakage current and piezoelectric constant ($d_{33}$) was also considerably improved, being as 0.62 nA/$cm^2$ at 1 V and approximately 51 pm/V, respectively.

  • PDF

Piezoelectric and Dielectric Properties of Non-stochiometric(K0.5Na0.5)0.97(Nb0.96-xTaxSb0.04)O3 Ceramics (비화학양론적인 (K0.5Na0.5)0.97(Nb0.96-xTaxSb0.04)O3 세라믹스의 유전 및 압전특성)

  • Sin, Sang-Hoon;Noh, Jung-Rae;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.611-615
    • /
    • 2012
  • In this study non-stoichiometric $(K_{0.5}Na_{0.5})_{0.97}(Nb_{0.96-x}Ta_xSb_{0.04})O_3$ ceramics were prepared by the conventional soild-state teaction method. The effect of Ta-substitution on the dielectric and piezoelectric properties were investigated. X-ray diffraction analysis of all the specimens less than x= 15 mol% indicated orthorhombic phase. Thereafter, the specimens showed orthorhombic phase near to pseudo-cubic. Sinterablity of all the specimens was improved due to secondary products such as KCT and KCN. The ceramics with x= 5 mol% showed the optimum velues of pizoelectric constant($d_{33}$)= 150 pC/N, electromechanical coupling factor (kp)= 0.45, electromechanical quality factor (Qm)= 418.9 and dielectric constant(${\varepsilon}_r$)= 567. Accordingly, These results indicate that the composition ceramics is a promising candidate for lead-free material.

Characterization of the Material Properties of 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ Single Crystals Grown by the Solid-State-Crystal-Growth Method (고상단결정법으로 성장시킨 0.68Pb ($Mg_{1}$3/$Nb_{2}$3/)$O_3$-0.32PbT$iO_3$ 압전단결정의 물성평가)

  • 이상한;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, all the materials constants of the PMN-32%PT single crystals grown by the solid state crystal growth method were measured by the resonance method. PMN-PT crystals of tetragonal symmetry have six elastic constants, three piezoelectric constants and two dielectric constants for their independent material constants. These materials constants were extracted from six sets of crystal samples of each different geometry to have different vibration modes respectively. Measured results showed that the crystal has larger electromechanical coupling factor k/sub 33/ (∼86%) and piezoelectric constant d/sub 33/ (∼1200pC/N) than conventional piezoceramics. Validity of the measurement was confirmed through comparison of the results with the impedance spectrum from finite element analysis of the samples and the results measured with a commercial do meter.

A NOVEL SPIRAL TYPE MEMS POWER GENERATOR WITH SHEAR MODE

  • Song, Hyun-Cheol;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.7-7
    • /
    • 2010
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for Ubiquitous Sensor Networks(USN). In particular, the piezoelectric energy harvesting from ambient vibration sources has intensively researched because it has a relatively high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system has some drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure as shown in the figure. The natural frequency of a cantilever could be decreased to the usable frequency region (under 300 Hz) because the natural frequency depends on the length of a cantilever. In this study, the natural frequency of the energy harvester was a lower than a normal cantilever structure and sufficiently controllable in 50 - 200 Hz frequency region as adjusting weight of a proof mass. Moreover, the MEMS energy harvester had a high energy conversion efficiency using a shear mode ($d_{15}$) is much larger than a 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate for a standalone power generator for USN.

  • PDF

Fabrication and Electric Properties of Piezoelectric Cantilever Energy Harvesters Driven in 3-3 Vibration Mode (3-3 진동 모드 압전 캔틸레버 에너지 하베스터의 제조 및 전기적 특성)

  • Lee, Min-seon;Kim, Chang Il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Paik, Jong-hoo;Cho, Jeong-ho;Park, Yong-ho;Jang, Yong-ho;Choi, Beom-jin;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.263-269
    • /
    • 2017
  • A piezoelectric cantilever energy harvester (PCEH) driven in longitudinal (3-3) vibration mode was fabricated, and its electrical properties were evaluated by varying the resistive load. A commercial PZT piezoelectric ceramic with a high piezoelectric charge constant ($d_{33}$) of 520 pC/N and the interdigitated (IDT) electrode pattern was used to fabricate the PCEH driven in longitudinal vibration. The IDT Ag electrode embedded piezoelectric laminates were co-fired at $850^{\circ}C$ for 2 h. The 3-3 mode PCEH was successfully fabricated by attaching the piezoelectric laminates to a SUS304 elastic substrate. The PCEH exhibited a high output power of 3.8 mW across the resistive load of $100k{\Omega}$ at 100 Hz and 1.5 G. This corresponds to a power density of $10.3mW/cm^3$ and a normalized global power factor of $4.56mW/g^2{\cdot}cm^3$. Given the other PCEH driven in transverse (3-1) vibration mode, the 3-3 mode PCEH could be better for vibration energy harvesting applications.

Electromechanical Properties of PMN-PT-PZ Composition for High Power Device (고출력 압전소자를 위한 압전 세라믹(PMN-PT-PZ)조성의 전기기계적 특성)

  • Lee, K.W.;Hong, J.K.;Jeong, S.H.;Lee, J.S.;Park, C.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1723-1725
    • /
    • 1999
  • This paper is the study for piezoelectric properties of PMN-PT-PZ composition for high power piezoelectric device. It needs the properties such as high mechanical quality factor(Qm), high electromechanical coupling coefficient(kp) and high dielectric strain constant$(d_31)$, and the stable electromechanical properties under high vibration level. For acquiring this results, the value of x is changed in 0.1Pb$(Mn_{1/3}Nb_{2/3})O_3$+(0.9-x)$PbZrO_3+xPbTiO_3$ composition to find MPB(morphotropic phase boundary), and the piezoelectric constants is measured by resonance-antiresonance frequency method, based on IRE Standard. Also, it is measured as a function of the amount of additive, $Nb_2O_5$. When the composition is applied to high power device, the electromechanical properties is measured by laser vibrometer to confirm the reliablity under high vibration level. From these results, PMN-PT-PZ composition is shown excellent properties and capacity of application to high power device.

  • PDF

Crystal Structure and Piezoelectric Properties of Four Component Langasite A3B Ga3Si2O14 (A = Ca or Sr, B = Ta or Nb)

  • Ohsato, Hitoshi;Iwataki, Tsuyoshi;Morikoshi, Hiroki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.171-176
    • /
    • 2012
  • As langasite $A_3BC_3D_2O_{14}$ compounds with piezoelectric properties exhibit no phase transition up to the melting point of 1,400-$1,500^{\circ}C$, many high temperature applications are expected for the SAW filter, temperature sensor, pressure sensor, and so on, based on the digital transformation of wider bandwidth and higher-bit rates. It has a larger electromechanical coupling factor compared to quartz and also nearly the same temperature stability as quartz. The $La_3Ga_5SiO_{14}$ (LGS) crystal with the $Ca_3Ga_2Ge_4O_{14}$-type crystal structure was synthesized and the crystal structure was analyzed by Mill et al. It is also an important feature that the growth of the single crystal is easy. In the case of three-element compounds such as $[R_3]_A[Ga]_B[Ga_3]_C[GaSi]_DO_{14}$ (R=La, Pr and Nd), the piezoelectric constant increases with the ionic radius of R. In this study, crystal structures of four-element compounds such as $[A_3]_A[B]_B[Ga_3]_C[Si_2]_DO_{14}$ (A = Ca or Sr, B = Ta or Nb) are analyzed by a single crystal X-ray diffraction, and the mechanism and properties of the piezoelectricity depending on the species of cation was clarified based on the crystal structure.