DOI QR코드

DOI QR Code

Fabrication and Electric Properties of Piezoelectric Cantilever Energy Harvesters Driven in 3-3 Vibration Mode

3-3 진동 모드 압전 캔틸레버 에너지 하베스터의 제조 및 전기적 특성

  • Lee, Min-seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Chang Il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji-sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Woon-ik (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hong, Youn-woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Yong-ho (Department of Material Science and Engineering, Pusan University) ;
  • Jang, Yong-ho (Technology & Research Center, Senbool Corporation) ;
  • Choi, Beom-jin (Technology & Research Center, Senbool Corporation) ;
  • Jeong, Young-hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 이민선 (한국세라믹기술원 전자소재부품센터) ;
  • 김창일 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터) ;
  • 박운익 (한국세라믹기술원 전자소재부품센터) ;
  • 홍연우 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터) ;
  • 박용호 (부산대학교 재료공학과) ;
  • 장용호 ((주)센불 기술연구소) ;
  • 최범진 ((주)센불 기술연구소) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터)
  • Received : 2017.02.20
  • Accepted : 2017.03.16
  • Published : 2017.05.01

Abstract

A piezoelectric cantilever energy harvester (PCEH) driven in longitudinal (3-3) vibration mode was fabricated, and its electrical properties were evaluated by varying the resistive load. A commercial PZT piezoelectric ceramic with a high piezoelectric charge constant ($d_{33}$) of 520 pC/N and the interdigitated (IDT) electrode pattern was used to fabricate the PCEH driven in longitudinal vibration. The IDT Ag electrode embedded piezoelectric laminates were co-fired at $850^{\circ}C$ for 2 h. The 3-3 mode PCEH was successfully fabricated by attaching the piezoelectric laminates to a SUS304 elastic substrate. The PCEH exhibited a high output power of 3.8 mW across the resistive load of $100k{\Omega}$ at 100 Hz and 1.5 G. This corresponds to a power density of $10.3mW/cm^3$ and a normalized global power factor of $4.56mW/g^2{\cdot}cm^3$. Given the other PCEH driven in transverse (3-1) vibration mode, the 3-3 mode PCEH could be better for vibration energy harvesting applications.

Keywords

References

  1. C. Alippi and C. Galperti, IEEE T. Circuits Syst., 55, 1742 (2008). [DOI: https://doi.org/10.1109/TCSI.2008.922023]
  2. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, IEEE Communications Survey & Tutorials, 17, 757 (2015). [DOI: https://doi.org/10.1109/COMST.2014.2368999]
  3. R. Calio, U. B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. Petris, and C. M. Oddo, Sensors, 14, 4755 (2014). [DOI: https://doi.org/10.3390/s140304755]
  4. H. A. Sodano, D. J. Inman, and G. Park, Shock Vib. Digest, 36, 197 (2004). [DOI: https://doi.org/10.1177/0583102404043275]
  5. W. G. Li, S. He, and S. Yu, IEEE T. Ind. Electron., 57, 868 (2010). [DOI: https://doi.org/10.1109/TIE.2009.2030761]
  6. C. D. Richard, M. J. Anderson, D. F. Bahr, and R. F. Richard, J. Micromech. Microeng., 14, 717 (2004). [DOI: https://doi.org/10.1088/0960-1317/14/5/009]
  7. S. G. Kim, S. Priya, and I. Kanno, MRS Bull., 37, 1039 (2012). [DOI: https://doi.org/10.1557/mrs.2012.275]
  8. A. Erurk and D. J. Inman, Smart Mater. Struct., 18, 025009 (2009). [DOI: https://doi.org/10.1088/0964-1726/18/2/025009]
  9. D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H.C.W. Ill, and D. J. Kim, J. Micromech. Microeng., 18, 055017 (2008). [DOI: https://doi.org/10.1088/9060-1317/18/5/055017]
  10. M. Han, Y. C. Chan, W. Liu, S. Zhang, and H. Zhang, Proc. The IEEE MEMS 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, Suzhou, China, 2013) p. 440-443. [DOI: https://doi.org/10.1109/NEMS.2013.6559767]
  11. H. W. Kim, S. Priya, H. Stephanou, and K. Uchino, IEEE T. Ultrason. Ferr., 54, 1851 (2007). [DOI: https://doi.org/10.1109/TUFFC.2007.469]
  12. D. A. Wang and N. Z. Liu, Sens. Actuators A Phys., 167, 449 (2011). [DOI: https://doi.org/10.1016/j.sna.2011.03.003]
  13. R. R. Knight, C. Mo, and W. W. Clark, J. Electroceram., 26, 14 (2011). [DOI: https://doi.org/10.1007/s10832-010-9621-8]
  14. W. J. Choi, Y. Jeon, J. H. Jeong, R. Sood, and S. G. Kim, J. Electroceram., 17, 543 (2006). [DOI: https://doi.org/10.1007/s10832-006-6287-3]
  15. M. S. Lee, J. S. Yun, U. I. Park, Y. W. Hong, J. H. Paik, J. H. Cho, Y. H. Park, Y. H. Jang, B. J. Choi, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 581 (2016). [DOI: https://doi.org/ 10.4313/JKEM.2016.29.9.581]
  16. W. Beckert and W. S. Kreher, Comp. Mater. Sci., 26, 36 (2003). [DOI: https://doi.org/10.1016/S0927-0256(02)00390-7]
  17. K. B. Kim, C. I. Kim, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, and S. Nahm, J. Eur. Ceram. Soc., 33, 305 (2013). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2012.09.001]
  18. H. C. Song, C. Y. Kang, S. J. Yoon, and D. Y. Jeong, Metals Mater. Int., 18, 499 (2012). [DOI: https://doi.org/10.1007/s12540-012-3018-y]
  19. M. A. Karami, O. Bilgen, and D. J. Inman, IEEE Trans. Ultrason. Ferroeletr. Freq. Control., 58, 1508 (2011). [DOI: https://doi.org/10.1109/TUFFC.2011.1969]
  20. T. H. Ng and W. H. Lizo, J. Intell. Mater. Syst. Struct., 16, 785 (2005). [DOI: https://doi.org/10.1177/1045389X05053151]