• Title/Summary/Keyword: Piezoelectric Method

Search Result 1,101, Processing Time 0.025 seconds

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Fabrication of Bulk PbTiO3 Ceramics with a High c/a Ratio by Ni Doping (Ni 도핑을 통한 정방성이 높은 벌크 PbTiO3 세라믹 합성)

  • Seon, Jeong-Woo;Cho, Jae-Hyeon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.407-411
    • /
    • 2022
  • Bulk-sized PbTiO3 (PT), which is widely known as a high-performance ferroelectric oxide but cannot be fabricated into a monolithic ceramic due to its high c/a ratio, was successfully prepared with a high tetragonality by partially substituting Ni ions for Pb ions using a solid-state reaction method. We found that Ni-doped PT was well-fabricated as a bulk monolith with a significant c/a ratio of ~1.06. X-ray diffraction on as-sintered and crushed samples revealed that NiTiO3 secondary phase was present at the doping level of more than 2 at.%. Scanning electron microscopic study showed that NiTiO3 secondary phase grew on the surface of PT specimens regardless of the doping level possibly due to the evaporation of Pb during sintering. We demonstrated that an unconventional introduction of Ni ions into A-site plays a key role on the fabrication of bulk PT, though how Ni ion functions should be studied further. We expect that this study contributes to a further development of displacive ferroelectric oxides with a high c/a ratio.

In situ Electric-Field-Dependent X-Ray Diffraction Experiments for Ferroelectric Ceramics (강유전 세라믹의 전기장 인가에 따른 in situ X-선 회절 실험)

  • Choi, Jin San;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.431-438
    • /
    • 2022
  • In functional materials, in situ experimental techniques as a function of external stimulus (e.g., electric field, magnetic field, light, etc.) or changes in ambient environments (e.g., temperature, humidity, pressure, etc.) are highly essential for analyzing how the physical properties of target materials are activated/evolved by the given stimulation. In particular, in situ electric-field-dependent X-ray diffraction (XRD) measurements have been extensively utilized for understanding the underlying mechanisms of the emerging electromechanical responses to external electric field in various ferroelectric, piezoelectric, and electrostrictive materials. This tutorial article briefly introduces basic principles/key concepts of in situ electric-field-dependent XRD analysis using a lab-scale XRD machine. We anticipate that the in situ XRD method provides a practical tool to systematically identify/monitor a structural modification of various electromechanical materials driven by applying an external electric field.

Effects of High-Energy Ball Milling and Sintering Time on the Electric-Field-Induced Strain Properties of Lead-Free BNT-Based Ceramic Composites

  • Nga-Linh Vu;Nga-Linh Vu;Dae-Jun Heo;Thi Hinh Dinh;Chang Won Ahn;Chang Won Ahn;Hyoung-Su Han;Jae-Shin Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.505-512
    • /
    • 2023
  • This study investigated crystal structures, microstructures, and electric-field-induced strain (EFIS) properties of Bi-based lead-free ferroelectric/relaxor composites. Bi1/2Na0.82K0.18)1/2TiO3 (BNKT) as a ferroelectric material and 0.78Bi1/2(Na0.78K0.22)1/2TiO3-0.02LaFeO3 (BNKT2LF) as a relaxor material were synthesized using a conventional solid-state reaction method, and the resulting BNKT2LF powders were subjected to high-energy ball milling (HEBM) after calcination. As a result, HEBM proved a larger average grain size of sintered samples compared to conventional ball milling (CBM). In addition, the increased sintering time led to grain growth. Furthermore, HEBM treatment and sintering time demonstrated a significant effect on EFIS of BNKT/BNKT2LF composites. At 6 kV/mm, 0.35% of the maximum strain (Smax) was observed in the HEBM sample sintered for 12 h. The unipolar strain curves of CBM samples were almost linear, indicating almost no phase transitions, while HEBM samples displayed phase transitions at 5~6 kV/mm for all sintering time levels, showing the highest Smax/Emax value of 700 pm/V. These results indicated that HEBM treatment with a long sintering time might significantly enhance the electromechanical strain properties of BNT-based ceramics.

Analysis of Key Parameters for the Printing Process Optimization of a Fluid Dispensing Systems (유체 디스펜싱 시스템의 프린팅 프로세스 최적화를 위한 주요 파라미터 분석)

  • Hoseung Kang;Haechang Jeong;Soonho Hong;Nam Kyung Yoon;Sunyoung Sohn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.382-393
    • /
    • 2024
  • The Microplotter system with a fluid dispensing method, sprays fluid based on ultrasonic pumping through piezoelectric devices. This technique can possible for various materials with a wide range of viscosities to be printed in microscale. In this paper, we introduces dispenser printing technology as well as aim to understand and apply various processes using the equipment. In addition, we will explain how to optimize the equipment by adjusting parameters such as spray intensity, tip height during printing, and patterning speed. By utilizing Microplotter's advantage of being compatible with a wide range of fluids, including metal nanoparticles, carbon nanotubes, DNA, and proteins, it is expected to be used in various fields such as printed electronics, biotechnology, and chemical engineering.

Application of artificial intelligence to improve the efficiency and stability of prosthetic hands via nanoparticle reinforcement

  • Jialing Li;Gongxing Yan;Zhongjian Tang;Saifeldin M. Siddeeg;Tamim Alkhalifah
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.385-399
    • /
    • 2024
  • NEMS (Nano-Electro-Mechanical Systems) devices play a significant role in the advancement of prosthetic hands due to their unique properties at the nanoscale. Their integration enhances the functionality, sensitivity, and performance of prosthetic limbs. Understanding the electro-thermal buckling behavior of such structures is crucial since they may be subjected to extreme heat. So, in this paper, the two-dimensional hyperbolic differential quadrature method (2D-HDQM) integrated with a four-variable refined quasi-3D tangential shear deformation theory (RQ-3DTSDT) in view of the trace of thickness stretching is extended to study electro-thermal buckling response of three-directional poroelastic FG (3D-PFG) circular sector nanoplate patched with piezoelectric layer. Aimed at discovering the real governing equations, coupled equations with the aid of compatibility conditions are employed. Regarding modeling the size-impacts, nonlocal refined logarithmic strain gradient theory (NRLSGT) with two variables called nonlocal and length scale factors is examined. Numerical experimentation and comparison are used to indicate the precision and proficiency related to the created procedure. After obtaining the outputs of the mathematics, an appropriate dataset is used for testing, training and validating of the artificial intelligence. In the results section will be discussed the trace associated with multiple geometrical and physical factors on the electro-thermal buckling performance of the current nanostructure. These findings are essential for the design and optimization of NEMS applications in various fields, including sensing, actuation, and electronics, where thermal stability is paramount. The study's insights contribute to the development of more reliable and efficient NEMS devices, ensuring their robust performance under varying thermal conditions.

Growth of $CdGa_2Se_4$ epilayer using hot wall epitaxy method and their photoconductive characteristics (HWE에 의한 $CdGa_2Se_4$ 박막 성장과 광전도 특성)

  • 홍광준;이관교;이상열;유상하;신용진;서상석;정준우;정경아;신영진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.366-376
    • /
    • 1997
  • $CdGa_2Se_4$, epilayer of tetragonal type are grown on Si(100) substrate by hot wall epitaxy method. The source and substrate temperature is $580^{\circ}C$ and $420^{\circ}C$ respectively, and the thickness of the film is 3 $\mu \textrm{m}$. The crystallihe structure of epilayers were investigated by double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 200 K and by polar optical scattering in the temperature range 200 K to 293 K. In order to explore of photocurrent to darkcurrent (pc/dc), maximum allowable power dissipation (MAPD), spectral response and response time. The results indicated that for the samples annealed in Se vapor the photoconductive characteristics are best. Then we obtained the sensitivity of 0.98, the value of pc/dc of $9.62{\times}10^6$, the MAPD of 321 ㎽ and the rise and decay time of 9 ㎳ and 9.5 ㎳, respectively.

  • PDF

Enhancement of Coagulation and Flocculation Efficiencies by Ultrasonic Chemical Spray Nozzle I (초음파 약품분사노즐을 이용한 응집효율 향상 I)

  • Kim, Jin-Kook;Cho, Soon-Haing;Ha, Dong-Yun;Koh, Jae-Seok;Kim, Yong-Hyun;Choi, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • To establish low-cost and high efficiency water treatment process, feasibility of applying ultrasonic spray nozzle for chemical injection was evaluated. Ultrasonic spray nozzle was manufactured using piezoelectric ceramics. Treatment efficiencies of contaminants by ultrasonic spray nozzle were compared with conventional chemical mixing such as back-mixing. It was found out that the rate of chemical diffusion rate by ultrasonic spray nozzle was faster than by back-mixing method. Removal efficiencies of various contaminants, such as turbidity, organics and microorganism by ultrasonic spray nozzle were also higher than by back-mixing method. By adapting ultrasonic spray nozzle in coagulant injection process, it can be prevented that the decline of treatment efficiency by coagulant overdose. The amount of coagulant can be reduced by applying ultrasonic spray nozzle in water treatment. Along with these advantages chemical mixing chamber is not required if ultrasonic spray nozzle is adapted. From these results, it can be concluded that chemical injection by ultrasonic spray nozzle is an economical and highly efficient device for coagulant mixing.

Evaluation of phase velocity in model rock mass using wavelet transform of surface wave (표면파에 대한 웨이블렛 변환을 이용한 모형 암반의 위상속도 예측)

  • Lee, Jong-Sub;Ohm, Hyon-Sohk;Kim, Dong-Hyun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.69-79
    • /
    • 2008
  • Prediction of ground condition ahead of tunnel face might be the most important factor to prevent collapse during tunnel excavation. In this study, a non-destructive method to evaluate the phase velocity in model rock mass using wavelet transform of surface wave was proposed aiming at ground condition assessment ahead of tunnel face. Model tests using gypsum as a rocklike material composed of two layers were performed. A Piezoelectric actuator with frequencies ranging from 150 Hz to 5 kHz was selected as a harmonic source. The acceleration history was measured with two accelerometers. Wavelet transform analysis was used to obtain the dispersion curves from the measured data. The experimental results showed that the near-field effects can be neglected if the distance between two receivers is chosen to be three times the wavelength. A simple inversion method using weighted factor based on the normal distribution was proposed. The inversion results showed that the predicted phase velocity agreed reasonably well with the measured one when the wavelength influence factor was 0.2. The depth of propagation of surface wave was from 0.42 to 0.63 times the wavelength. The range of wavelength varying with phase velocity in dispersion curve matched well with that estimated by inversion technique.

  • PDF

Microstructures and Magnetic Properties of Multiferroic BiFeO3 Thin Films Deposited by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 증착된 Multiferroic BiFeO3 박막의 미세구조 및 자기적 특성)

  • Song, Jong-Han;Nam, Joong-Hee;Kang, Dae-Sik;Cho, Jung-Ho;Kim, Byung-Ik;Choi, Duck-Kyun;Chun, Myoung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.222-227
    • /
    • 2010
  • $BiFeO_3$ (BFO) thin films were deposited on Pt/Ti/$SiO_2$/Si(100) substrates by RF magnetron sputtering method at room temperature. The influence of the flow rate of $O_2$ gas on the preparation of $BiFeO_3$ thin films was studied. XRD results indicate that the $BiFeO_3$ thin films were crystallized to the perovskite structure with the presence of small amount of impurity phases. The flow rate of $O_2$ gas has great affect on the microstructures and magnetic properties of $BiFeO_3$ thin films. As flow rate of $O_2$ gas increased, roughness and grain size of the thin films increased. $BiFeO_3$ thin films exhibited weak ferromagnetic behavior at room temperature. The PFM images revealed correlation between the surface morphology and the piezoresponse, indicating that the piezoelectric coefficient is related to microstructure.