DOI QR코드

DOI QR Code

Fabrication of Bulk PbTiO3 Ceramics with a High c/a Ratio by Ni Doping

Ni 도핑을 통한 정방성이 높은 벌크 PbTiO3 세라믹 합성

  • Seon, Jeong-Woo (Jülich-UNIST Leading Institute for Advance Energy Materials & Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Cho, Jae-Hyeon (Jülich-UNIST Leading Institute for Advance Energy Materials & Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Jo, Wook (Jülich-UNIST Leading Institute for Advance Energy Materials & Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
  • 선정우 (울산과학기술원 신소재공학과 및 JULIA 연구센터) ;
  • 조재현 (울산과학기술원 신소재공학과 및 JULIA 연구센터) ;
  • 조욱 (울산과학기술원 신소재공학과 및 JULIA 연구센터)
  • Received : 2022.05.13
  • Accepted : 2022.05.23
  • Published : 2022.07.01

Abstract

Bulk-sized PbTiO3 (PT), which is widely known as a high-performance ferroelectric oxide but cannot be fabricated into a monolithic ceramic due to its high c/a ratio, was successfully prepared with a high tetragonality by partially substituting Ni ions for Pb ions using a solid-state reaction method. We found that Ni-doped PT was well-fabricated as a bulk monolith with a significant c/a ratio of ~1.06. X-ray diffraction on as-sintered and crushed samples revealed that NiTiO3 secondary phase was present at the doping level of more than 2 at.%. Scanning electron microscopic study showed that NiTiO3 secondary phase grew on the surface of PT specimens regardless of the doping level possibly due to the evaporation of Pb during sintering. We demonstrated that an unconventional introduction of Ni ions into A-site plays a key role on the fabrication of bulk PT, though how Ni ion functions should be studied further. We expect that this study contributes to a further development of displacive ferroelectric oxides with a high c/a ratio.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부가 지원하는 한국연구재단의 해외우수연구기관유치사업(2017K1A4A3015437)의 연구비 지원을 받아 수행되었습니다.

References

  1. D. Damjanovic, Rep. Prog. Phys., 61, 1267 (1998). [DOI: https://doi.org/10.1088/0034-4885/61/9/002]
  2. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 2001) p. 8.
  3. I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, Nature, 503, 509 (2013). [DOI: https://doi.org/10.1038/nature12622]
  4. H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, IEEE J. Solid-State Circuits, 42, 101 (2006). [DOI: https://doi.org/10.1109/JSSC.2006.886523]
  5. J. F. Scott and C. A. Paz de Araujo, Science, 246, 1400 (1989). [DOI: https://doi.org/10.1126/science.246.4936.1400]
  6. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager III, L. W. Martin, and R. Ramesh, Nat. Nanotechnol., 5, 143 (2010). [DOI: https://doi.org/10.1038/nnano.2009.451]
  7. S. V. Kalinin, A. N. Morozovska, L. Q. Chen, and B. J. Rodriguez, Rep. Prog. Phys., 73, 056502 (2010). [DOI: https://doi.org/10.1088/0034-4885/73/5/056502]
  8. G. Shirane and S. Hoshino, J. Phys. Soc. Jpn., 6, 265 (1951). [DOI: https://doi.org/10.1143/JPSJ.6.265]
  9. Y. Xu, Ferroelectric Materials and Their Applications ((Elsevier, Amsterdam, 2013) p. 101.
  10. R. E. Cohen, Nature, 358, 136 (1992). [DOI: https://doi.org/10.1038/358136a0]
  11. M. J. Haun, E. Furman, S. J. Jang, H. A. Mckinstry, and L. E. Cross, J. Appl. Phys., 62, 3331 (1987). [DOI: https://doi.org/10.1063/1.339293]
  12. G. Shirane, R. Pepinsky, and B. C. Frazer, Acta Cryst., 9, 131 (1956). [DOI: https://doi.org/10.1107/S0365110X56000309]
  13. V. M. Goldschmidt, Naturwissenschaften, 14, 477 (1926). [DOI: https://doi.org/10.1007/BF01507527]
  14. R. S. Roth, J. Res. Natl. Bur. Stand., 58, 75 (1957). [DOI: https://doi.org/10.6028/jres.058.010]
  15. D. Y. Cho, J. Y. Kim, B. G. Park, K. J. Rho, J. H. Park, H. J. Noh, B. Kim, S. J. Oh, H. M. Park, J. S. Ahn, H. Ishibashi, S. W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo, Phys. Rev. Lett., 98, 217601 (2007). [DOI: https://doi.org/10.1103/PhysRevLett.98.217601]
  16. R. E. Cohen and H. Krakauer, Ferroelectrics, 136, 65 (1992). [DOI: https://doi.org/10.1080/00150199208016067]
  17. Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, and M. Sakata, Phys. Rev. Lett., 87, 217601 (2001). [DOI: https://doi.org/10.1103/PhysRevLett.87.217601]
  18. A. R. Damodaran, S. Pandya, J. C. Agar, Y. Cao, R. K. Vasudevan, R. Xu, S. Saremi, Q. Li, J. Kim, M. R. McCarter, L. R. Dedon, T. Angsten, N. Balke, S. Jesse, M. Asta, S. V. Kalinin, and L. W. Martin, Adv. Mater., 29, 1702069 (2017). [DOI: https://doi.org/10.1002/adma.201702069]
  19. H. Jaffe, J. Am. Ceram. Soc., 41, 494 (1958). [DOI: https://doi.org/10.1111/j.1151-2916.1958.tb12903.x]
  20. A. Safari, R. K. Panda, and V. F. Janas, Key Eng. Mater., 122, 35 (1996). [DOI: https://doi.org/10.4028/www.scientific.net/KEM.122-124.35]
  21. E. C. Paris, M.F.C. Gurgel, T. M. Boschi, M. R. Joya, P. S. Pizani, A. G. Souza, E. R. Leite, J. A. Varela, and E. Longo, J. Alloys Compd., 462, 157 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2007.07.107]
  22. A. Pelaiz-Barranco, Y. Mendez-Gonzalez, D. C. Arnold, P. Saint-Gregoire, and D. J. Keeble, J. Mater. Sci., 47, 1094 (2012). [DOI: https://doi.org/10.1007/s10853-011-5900-2]
  23. H. Takeuchi, S. Jyomura, E. Yamamoto, and Y. Ito, J. Acoust. Soc. Am., 72, 1114 (1982). [DOI: https://doi.org/10.1121/1.388319]
  24. D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, P. H. Fuoss, G. B. Stephenson, C. Thompson, D. M. Kim, K. J. Choi, C. B. Eom, I. Grinberg, and A. M. Rappe, Phys. Rev. Lett., 96, 127601 (2006). [DOI: https://doi.org/10.1103/PhysRevLett.96.127601]
  25. T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, and J. Rodel, J. Am. Ceram. Soc., 95, 711 (2012). [DOI: https://doi.org/10.1111/j.1551-2916.2011.04848.x]
  26. B. Noheda, D. E. Cox, G. Shirane, S. E. Park, L. E. Cross, and Z. Zhong, Phys. Rev. Lett., 86, 3891 (2001). [DOI: https://doi.org/10.1103/PhysRevLett.86.3891]
  27. R. Lakshminarayanan, D. K. Shetty, and R. A. Cutler, J. Am. Ceram. Soc., 79, 79 (1996). [DOI: https://doi.org/10.1111/j.1151-2916.1996.tb07883.x]
  28. A. V. Virkar, J. L. Huang, and R. A. Cutler, J. Am. Ceram. Soc., 70, 164 (1987). [DOI: https://doi.org/10.1111/j.1151-2916.1987.tb04952.x]
  29. J. B. Bellam, M. A. Ruiz-Preciado, M. Edely, J. Szade, A. Jouanneaux, and A. H. Kassiba, RSC Adv., 5, 10551 (2015). [DOI: https://doi.org/10.1039/c4ra12516a]
  30. A. T. Qiu, L. J. Liu, W. Pang, X. G. Lu, and C. H. Li, Trans. Nonferrous Met. Soc. China, 21, 1808 (2011). [DOI: https://doi.org/10.1016/S1003-6326(11)60935-7]
  31. M. Sepliarsky, Z. Wu, A. Asthagiri, and R. E. Cohen, Ferroelectrics, 301, 55 (2004). [DOI: https://doi.org/10.1080/00150190490454882]
  32. H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Front. Phys., 10, 107701 (2015). [DOI: https://doi.org/10.1007/s11467-015-0512-y]
  33. G. Shirane, S. Hoshino, and K. Suzuki, J. Phys. Soc. Jpn., 5, 453 (1950). [DOI: https://doi.org/10.1143/Jpsj.5.453]
  34. J. H. Cho, J. H. Lee, H. Jang, N. J. Lee, W. S. Kang, G. T. Hwang, S. Kim, M. G. Kim, and W. Jo, J. Appl. Phys., 130, 094101 (2021). [DOI: https://doi.org/10.1063/5.0058823]
  35. J. H. Cho, S. Cho, J. H. Lee, H. Palneedi, J. H. Lee, H. P. Kim, N. J. Lee, S. Tigunta, S. Pojprapai, S. Kim, J. Ryu, Y. S. Oh, S. Hong, and W. Jo, J. Am. Ceram. Soc., 104, 6384 (2021). [DOI: https://doi.org/10.1111/jace.18012]
  36. J. Xu, W. Ding, W. Zhao, W. Zhao, Z. Hong, and F. Huang, ACS Energy Lett., 2, 659 (2017). [DOI: https://doi.org/10.1021/acsenergylett.7b00018]