• Title/Summary/Keyword: Piecewise analysis

Search Result 168, Processing Time 0.026 seconds

Analysis of Pile Groups Considering Pile-Cap Interaction (말뚝-캡 강성을 고려한 군말뚝기초의 해석)

  • 정상섬;원진오;허정원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.363-370
    • /
    • 2001
  • A computationally efficient algorithm to analyze a group pile behavior is proposed by consideration of both soil-pile and pile-cap interactions. Using toad transfer method the nonlinear characteristics of the soil-pile interaction for a single pile is modeled by piecewise linear soil springs (p-y, t-z, and q-z curves). Beam-column method, one of the most practical approaches, is used for numerical modeling of the soil-pile system. In addition to the group effect resulting from the soil-pile-soil interaction, for a more realistic analysis it is essential to consider the effect of pile-cap interaction including geometric configuration of the piles in a group and conectivity conditions between piles and the cap. This paper mainly focuses on the pile-cap interaction and the development of a rational numerical procedure of its incorporation with the beam-column method.

  • PDF

PWF-GPH method for the statistical analysis of failure time data (고장시간 자료의 통계적 분석을 위한 PWF-GPH 방법)

  • 김선영;윤복식
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.1
    • /
    • pp.114-128
    • /
    • 1996
  • In this paper, a life distribution fitting method based on generalized phase-type distributions(GPH) is presented. By fitting the life distribution to a GPH, we can utilize various useful properties of the GPH. Two different approaches are used according to the properties of the given failure time data. One is an approximation to a GPH through the piecewise Weibull failure rate(PWF) model and the other is a direct approximation to a GPH using the empirical distribution function. Two numerical examples are also presented. In the first example, both of the two approaches are utilized and compared for an incomplete data set. And in the second example, the direct approximation method from an empirical distribution is utilized for the analysis of a complete data set. In both cases, we could confirm the validity of the proposed method.

  • PDF

LIMIT ANALYSIS OF CONTINUOUS STRUCTURES USING MATHEMATICAL PROGRAMMING

  • Victor-A.Pulmano;Loi, Francis-Tin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.7-19
    • /
    • 1992
  • An efficient approach to limit analysis is presented whereby a continuous perfectly plastic structure is replaced by a discrete mathematical model. It is formulated as a mathematical programming problem using the static theorem of plasticity. The discretization is accomplished by writing the governing equilibrium equations in finite difference form, and is combined with piecewise linearization of the nonlinear yield curve, thus converting the formulation into a linear programming exercise. Examples of reported cases involving plates and shells are solved to illustrate the ease of application of the present method, its flexibility and accuracy - features which it make attractive to practising engineers.

  • PDF

Műller Formulation for Analysis of Scattering from 3-D Dielectric Objects with Triangular Patching Model

  • Lee, Chang-Hyun;Cho, Jin-Sang;Jung, Baek-Ho;Sarkar Tapan K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.129-135
    • /
    • 2007
  • In this paper, we present a set of numerical schemes to solve the Muller integral equation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional (3-D) dielectric bodies by applying the method of moments (MoM). The piecewise homogeneous dielectric structure is approximated by planar triangular patches. A set of the RWG (Rao, Wilton, Glisson) functions is used for expansion of the equivalent electric and magnetic current densities and a combination of the RWG function and its orthogonal component is used for testing. The objective of this paper is to illustrate that only some testing procedures for the Muller integral equation yield a valid solution even at a frequency corresponding to an internal resonance of the structure. Numerical results for a dielectric sphere are presented and compared with solutions obtained using other formulations.

Optimum time history analysis of SDOF structures using free scale of Haar wavelet

  • Mahdavi, S.H.;Shojaee, S.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • In the recent decade, practical of wavelet technique is being utilized in various domain of science. Particularly, engineers are interested to the wavelet solution method in the time series analysis. Fundamentally, seismic responses of structures against time history loading such as an earthquake, illustrates optimum capability of systems. In this paper, a procedure using particularly discrete Haar wavelet basis functions is introduced, to solve dynamic equation of motion. In the proposed approach, a straightforward formulation in a fluent manner is derived from the approximation of the displacements. For this purpose, Haar operational matrix is derived and applied in the dynamic analysis. It's free-scaled matrix converts differential equation of motion to the algebraic equations. It is shown that accuracy of dynamic responses relies on, access of load in the first step, before piecewise analysis added to the technique of equation solver in the last step for large scale of wavelet. To demonstrate the effectiveness of this scheme, improved formulations are extended to the linear and nonlinear structural dynamic analysis. The validity and effectiveness of the developed method is verified with three examples. The results were compared with those from the numerical methods such as Duhamel integration, Runge-Kutta and Wilson-${\theta}$ method.

Simulation based Comparative Loss Analysis and Output Characteristic for 25MW Class of High Power Multi-level Inverters (25MW급 대용량 멀티레벨 인버터의 시뮬레이션 기반 손실해석과 출력특성 비교 분석)

  • Kim, I-Gim;Park, Chan-Bae;Baek, Jei-Hoon;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.337-343
    • /
    • 2015
  • The multi-level inverters are highly efficient for high-power and medium-voltage AC driving applications, such as high-speed railway systems and renewable energy resources, because such inverters generate lower total harmonic distortion (THD) and electromagnetic interface (EMI). Lower switching stress occurs on switching devices compared with conventional two-level inverters. Depending on the multi-level inverter topology, the required components and number of switching devices are different, influencing the overall efficiency. Comparative studies of multi-level inverters based on loss analysis and output characteristic are necessary to apply multi-level inverters in high-power AC conversion systems. This paper proposes a theoretical loss analysis method based on piecewise linearization of characteristic curves of power semiconductor devices as well as loss analysis and output performance comparison of five-level neutral-point clamped, flying capacitor inverters, and high-level cascaded H-bridge multi-level inverters.

Pattern Analysis of Maximum Power Point by means of Solar Cell Module Array Simulation (태양전지 모듈 어레이 시뮬레이션을 이용한 최대전력점 패턴분석)

  • Jeong, Ji-Won;Park, In-Gyu;Hwang, Kuk-Yeon;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • In the paper, a pattern analysis to decide whether the 1st local peak power point near open circuit voltage is the global peak power point or not, in case that the voltage and current at the 1st local peak power point are in a specific range, for Maximum Power Point Tracking on the photo voltaic power conversion system. When a solar cell panel array is shaded partially, multi-local peak power points can occur. That makes it hard to search the global peak power point. Through Tableau analysis using by piecewise linear solar cell model, V-I characteristic of a solar cell panel array circuit when partial shading problem happens, is simulated. The global peak power and the local peak power points is confirmed by simulations. Voltage and current values and patterns of V-I characteristic are analyzed. The generating efficiency of the solar cell panel array is improved, when the solar cell panel array circuit is operated at the power point estimated by setting up specific range.

Analysis of Multi-Layered Structural Systems Using Nonlinear Finite Elements-Boundary Elements (반무한 다중 구조계의 비선형 유한요소 - 경계요소 해석)

  • 김문겸;장정범;이상도;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.58-64
    • /
    • 1992
  • It is usual that underground structures are constructed within multi-layered medium. In this paper, an efficient numerical model ling of multi-layered structural systems is studied using coupled analysis of finite elements and boundary elements. The finite elements are applied to the area in which the material nonlinearity is dominated, and the boundary elements are applied to the far field area where the nonlinearity is relatively weak. In the boundary element model 1 ins of the multi-layered medium, fundamental solutions are restricted. Thus, methods which can utilize existing Kelvin and Melan solution are sought for the interior multi-layered domain problem and semi infinite domain problem. Interior domain problem which has piecewise homogeneous layers is analyzed using boundary elements with Kelvin solution; by discretizing each homogeneous subregion and applying compatibility and equilibrium conditions between interfaces. Semi-infinite domain problem is analyzed using boundary elements with Melan solution, by superposing unit stiffness matrices which are obtained for each layer by enemy method. Each methodology is verified by comparing its results which the results from the finite element analysis and it is concluded that coupled analysis using boundary elements and finite elements can be reasonable and efficient if the superposition technique is applied for the multi-layered semi-infinite domain problems.

  • PDF

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.

New Stability Analysis of a Single Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2430-2434
    • /
    • 2003
  • This paper provides a new approach to analyze the stability of TCP Vegas, which is a kind of feedback-based congestion control algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium points, this approach uses the exactly characterized dynamic model to get a new stability criterion via a piecewise and delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs). Using the new criterion, this paper shows that the current TCP Vegas algorithm is stable in the sufficiently wide region of network delay and link capacity.

  • PDF