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LIMIT ANALYSIS OF CONTINUOUS STRUCTURES
USING MATHEMATICAL PROGRAMMING

Victor A. Pulmano* Francis Tin-Loi%

ABSTRACT

An efficient approach to limit analysis is presented whereby a continuous perfectly
plastic structure is replaced by a discrete mathematical model, It is formulated as a
mathematical programming problem using the static theorem of plasticity. The
discretization is accomplished by writing the governing equilibrium equations in
finite difference form, and is combined with piecewise linearization of the nonlinear
yield curve, thus converting the formulation into a linear programming exercise,
Examples of reported cases involving plates and shells are solved to illustrate the
ease of application of the present method, its flexibility and accuracy ~ features
which it make attractive to practising engineers,

1, INTRODUCTION

The limit analysis of continuous structures such as cylindrical shells and plates
has received considerable attention since the early 1950s [e.g. 1-4] and the works of
notable early researchers in the area are referenced in the classical texts [5,6]. The
methods used in these works were based on analytical solutions which, despite its
obvious advantage of being expressed in closed forms, have two major shortcomings,
First, it requires considerable skill in choosing the appropriate stress field with an
assumed plastic regime or mechanism before proceeding to solve the governing nonlinear
algebraic equations, Secondly, it can only be applied in general to relatively simple
problems, which even then would require major reformulation for different boundary
conditions, loads or yield conditions. In view of these disadvantages, there is
evident need for a general, systematic and efficient approaches to the problen,
especially if they are to be used by practising engineers,

In this paper, a general, systematic and efficient approach to limit analysis is
introduced whereby a continuous structure made of perfectly plastic material is
replaced
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by discrete mathematical model, This idea originates from the early works by Ceradini
and Gavarini [7] and Koopman and Lance [8]. It involves expressing the lower bound
theorem of plasticity as a mathematical programming problem (MP), and with linearized
equilibrium and yield conditions as constraints the problem is then converted into a
linear programming (LP) problem. Numerous key references outlining the development of
the application of MP techniques to plastic 1limit analysis are given in the
comprehensive reviews of Maier and Munro [9] and Maier and Lloyd Smith [10]. These
reviews clearly show that MP methods, because of its simplicity and power, are ideally
suited for finding the limit loads of a wide range of suitably discretized structural
models,

2. METHOD OF ANALYSIS

The basis of the method presented herein is the lower bound (static) theorem of
limit analysis., This theorem states that the load on a perfectly plastic structure,
which corresponds to any arbitrary stress field that is in equilibrium with the load
and nowhere violates the yield condition, is a lower bound to the actual plastic
collapse load., The difficulty of analytical methods mentioned earlier is the
determination of appropriate stress fields which satisfy equilibrium equations, the
force boundary conditions, and yield conformity, whilst at the same time maximizing
the load parameter, This difficulty is overcome by replacing the continuous stress
fields of the structure by a finite number of stress parameters, This is done quite
conveniently by writing the basic differential equations of equilibrium and force
boundary conditions in finite difference form. These stress parameters are used
together with a linear or specially linearized nonlinear, yield condition and an
additional variable, the load parameter. Thus, the aim of the analysis is to maximize
the proportionally applied loads, defined by a common Jload multiplier, whilst
satisfying both the equilibrium and yield conditions, At this point, two points are
worthy of note, Firstly, as with all discretized analyses, the solution obtained is
only an approximation to the actual one, It is therefore necessary to perform
convergence studies through mesh refinement of the model in order to obtain indication
of the accuracy of the computed collapse load, In fact, a lower bound solution is not
guaranteed due to possible yield violations at locations between chosen check points.
Secondly, the flexibiltiy of the approach is largely due to a formulation which allows
the discretized equilibrium equations to be systematically written and independently
of the 1linearized yield conditions., This feature is particularly useful when
performing studies involving changing parameters such as mesh size, types of loadings
and boundary conditions.

The essential ingredients of the proposed method will be described in more detail
in the following sections through the analysis of axisymmetrically loaded (a) circular
orthotropic plates and (b) circular cylindrical shells,

3. CIRCULAR ORTHOTROPIC PLATES

3.1 Equilibriﬁm and Boundary Conditions



Consider a perfectly plastic axisymmetrically loaded circular plate of radius R
and thickness 2H. The essential variables of the problem are the circumferential and
radial bending moments Mo and Mr, respectively, with positive directions as shown in
Fig. 1 for an element of the plate located r from the centre, These stress resultants
are also active in that they contribute to the yield condition [5], Also given in Fig,
1 are the shear force Q and pressure p., The equilibrium equations then take the form,

d(rMr)/dr - Mg = rQ (1a)
Q@ =-(1/r)f pr dr (1b)
In dimensionless form, Eq, 1 becomes

d(xm)/dx -n/(1- ) = (QRx)/[Meo(1-@)] ()

in which x=r/R, m=Mr/Mro, n=Ma/Mgo, a=[1-(Mro/Mao)], Mro=0oroH2, Meo= ceoH? and oro,
cgo = the radial and tangential yield strengths, respectively, of the material, It is
also assumed that the tensile and compressive yield strengths are equal,

For the structure, equilibrium is ensured if Eq. 2 is supplemented by force or
static boundary conditions, The condition given in Eq. 2 will now be linearized,

The plate is divided into equally spaced nodes at intervals of h, as is typical of
conventional finite difference schemes, For a circular plate which is subjected to a
uniformly distributed load p over a circular area of radius a, the central difference
0(h2) approximation of Eq. 1 at the i-th node is,

xi(mi+1-mi-1) + 2hmi ~ [(2h)/(1-@)](ni) = [1/{2(1-a )} up®)[{(xi/y)2-1} §+1] (3)

in which y=a/R, p*=P/(xa?), P is the total load and u is a monotonically increasing
load parameter for a known pi, and &=0 (for xi)y) or 1 (for xi{y).

The boundary conditions are specified as follows: (a) simpiy supported: m=0; (b)
fixed: no constraints; and (c) free: m=0, mi+1-mi-1=0,

3.2 Yield Conditions

As in reference [4], the circular orthotropic plate is assumed to obey the
modified Tresca yield condition shown In dimensionless stress space in Fig, 2, A
compact and efficient mathematical scheme for representing the piecewise linear (PWL)
yield condition is in terms of vertices or corners of the convex yield polygon, an
idea first introduced by Zavelani-Rossi [11]. In essence, the stress vector Qi with
terms {ni mi} at any node i can be expressed by the linear combination of non-negative
coefficients or convex multipliers £1i of the corner vectors as follow:

{oi} = [vil{gi} ; ({g&i} =20 @



where Vi 1s a matrix which collects all the extreme point vertices of PWL polygon, For
example, the relevant vectors and matrices appropriate to the PWL polygon shown in
Fig. 2 are

@i} = {ni mi} (52)

[vil= 1 0 -1 -1 o0 1 (5b)
1 1 0 -1 -1 0

(i} ={&i1 -+ £is} (5¢)

For node i, plastic conformity 1s ensured if
Ei1+Ei2+Eis+Eia+Eis+Eie <1 or [Uil{gi} < 1 (6)

where Ui is a row matrix of size [1 x 6] for six vertices, Finally, Eqs. 5 and 6 can
be extended over all 1 =1 ,,,, s check nodes of the structure to give,

(@} =[vi{&}: {(&£}=20; and [UJ{&} <1 )

in which for s nodes and six yield vertices per node (Fig. 2), Q 1s a vector of length
2s of active stress resultants, V is a [2s x 6s] matrix of yield corners, £ is a
vector of length 6s of corner multipliers, U is a [6s x s] boolean matrix (i.e., with
only 0 and 1 entries), 0 is a null vector of length 6s and 1 is a vector of length s
with only unit entries,

3.3 Linear Programming Formulation

The limit analysis can be carried out through application of the static theorem of
plastic theory by maximizing the proportionally applied load multiplier s while
satisfying both the equilibrium and yield conditions, The fundamental relations
developed in the previous sections can now be used for the mathematical formulation of
the limit analysis problem,

For the discretized plate model under uniformly distributed pressure up acting
over a circular area of varying radius, the relevant MP formulation for finding the
limit load factor uc can be written compactly as,

Mc = max x| Eq. 3, b.c, and Eq. 7 (8)
where "b.c.” refers to boundary conditions and the symbol | is read as "such that",
The formulation given by Eq. 8 is a linear programming problem in variables u, Q and
£ since the objective function and all constraints are linear. Note also that u and
£ are non-negative variables whereas elements of Q are “"free" or sign-unconstrained,

Some remarks about the linear programming problem described by Eq. 8 are
appropriate at this stage. Firstly, the efficiency of using the vertex formulation,
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instead of the alternative and commonly used hyperplane description (e.g. Maier [12D),

for checking the yield condition can now be explained, Far fewer constraints are
typically required to check yield conformity through Eq, 7. In the vertex formulation,

only three constraints per node (the non-negativity requirements for & are not
counted in LP as they automatically taken care of in the simplex solution algorithm)
are necessary as compared to six for the hexagon shown in Fig, 2, This is important
since the computational effort required to solve LP problems increases rapidly with
the number of constraints, whilst the number of variables 1is not equally crucial.
Obviously, the savings increase with finer linearizations of the yield surface since
the vertex formulation would still require three constraints per node, while in a
hyperplane formulation the number of constraints per node is equal to the number of
hyperplanes., Secondly, the dual LP formulation of Eq. 8 represents the kinematic
approach and can be neatly obtained from Kuhn-Tucker’s conditions of mathematical
programming theory. Thirdly, a feasible, not necessarily the actual collapse mechanism

for the discretized model can be constructed by inspection of the optimal dual values
of the static LP problem, Finally, with LP formulation, the stress field needs not be
explicitly generated; the only requirements are that it should satisfy equilibrium and

yield. Thus, the finite difference scheme of discretizing the differential equations
is indeed very attractive since the resulting finite difference equations need not be
explicitly solved, as is the case with an elastic analysis. In addition, the present
approach lends itself ideally to computer solution since the problem can be

efficiently and systematically set up.

3.4 Examples

Basically, the same problem as analysed by Markowitz and Hu [4] was solved using
the LP approach presented above, It involves the calculations of the collapse
pressures of simply supported and clamped plates subjected to uniform pressure acting
over a circular area of varying radius and different degrees of anistropy as defined
by the parameters a/R and a, respectively., To determine the number of mesh points to
be used in obtaining the various solutions, the analyses of fully loaded simply
supported and clamped plates were carried out for mesh divisions ranging from 10 to
98. The results are shown in Fig, 3, and for mesh discretization of 90-division mesh
size, the difference between exact and computed value is about 1%, Various cases
(i.e., for a/R = 0.1, 0.2, 0.4, 0.6 0,8 and 1.0 and a = -1, -3/7, 0 (isotropic), 0.3
and 0,5) were run using 90 mesh divisions. The solutions are shown in Fig. 4 which
were superimposed on the curves obtained by Markowitz and Hu [4], Agreement is clearly
excellent in all cases,

4. CYLINDRICAL SHELLS
4.1 Equilibrium and Boundary Conditions

Consider a perfectly plastic cylindrical shell of length L, radius of midsurface
R, and constant thickness t (Fig. 5a), and is subjected to an internal axially
symmetric hydrostatic pressure distribution in the outward radial direction. Without
loss of generality, no loads are applied in the axial direction, A typical shell
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differential element under applied pressure P and stress resultants is shown in
Fig.5b., The well-known equilibrium condition for this differential element in a
cylindrical coordinate system (X, @,r) can be easily derived (e.g.[13]) by elimination
of shears S from the radial and moment equilibrium equations, In dimensionless form,
it is given as, :

n" + 2a2(n-p) =0 ¢))

in which x=X/L, p=PR/ o0ot, n=Na/No, m=Mx/Mo, No=0ot, Mo=0'otz/4, a=2L2/Rt; Mx is the
bending moment perpendicular to the shell axis, Ng is the circumferential membrane
force, ©o 1is the material yield stress, and prime denotes differentiation with
respect to x,

For the structure, equilibrium is ensured if Eq. 9 1is supplemented by force
bopundary conditions, Both of these will now be linearized.

The shell is divided into s equally spaced nodes at intervals of h, as is typical
of conventional finite difference scheme (Fig. 6), and dummy stations are labelled as
node 0 and (s+1)., The central difference O(h2) approximation for Eq. 9 is used for all
nodes, and can be written as,

(mi-1 - 2mj + mi+1) + 2@2b2(ni - upi) =0 d=1...9) (10)

in which u& is a monotonically increasing load parameter for a known pi. A compact
matrix representation of Eq, 10 is

[Al{m} + B{n} - B u{p} = {0} an

in which [A] is a [s x (s+2)] block diagonal equilibrium matrix; {m}, {n}, and {p} are
vectors of length (s+2), s and s, respectively; B=2a?2h? ; and {0} is a null vector,

The force boundary conditions for any boundary node r (nodes 1 and s in this case)
can now be specified according to one of three typical edge conditions as follows: (a)
free: mr=0, mr-1-Mr+1=0; (b) simply supported: mr=0; (c) clamped or fixed: no
constraints, Note that a central difference approximation has also been used to
represent the zero shear condition for case (a),

4.2 Yield Conditions and LP Formulation

It has been shown elsewhere [13,14] that for the case where there is no axial
load, only the stress resultants m and n are "active" or enter into the yield
condition; Mo and S (Fig. 5b) are "reactions" in Prager’s sense since they do not a
priori vanish for reasons of symmetry or equilibrium, and nevertheless do not appear
in the dissipation function, The exact nonlinear yield curve for a circular
cylindrical shell of uniform section made of Tresca material has been given by Hodge
[15], and is shown in Fig, 7, Also shown in Fig, 7 is a piecewise .linear (PWL)
approximation to the nonlinear curve, and is used in the present analysis. In effect,
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the hexagon corresponds to the exact yield condition of a Tresca sandwich shell, It is
also a lower bound approximation to sandwich and uiniforn shells obeying von Mises’
yield criterion as given elsewhere [5].

A compact mathematical expression of the PWL yield condition is again achieved by
means of a vertex representation similar to those described by Eq. 7. Also, the
present limit analysis problem follows the same LP formulation described in Sec. 3.3
with the appropopriate constraints,

4.3 Examples

The same structure as analyzed by Cinquini et al, [16] using analytical method,
was solved using the LP approach, It inveolves the calculation of collapse loads for a
hydrostatically loaded circular cylindrical shell with its lower edge built-in.

A free upper edge case with shell parameter o = 2.958 is first considered; a
complete solution for this case is given by Cinquini et al, [16]. The finite
difference discretization adopted, as shown in Fig, 8a, has nine equally spaced nodes
with node 1 free and node 9 fixed, and the dummy stations at nodes 0 and 10, Thus, h =
0.125 and the parameter B = 0,27343, The LP problem involved 38 constraints (9
equilibrium, 2 boundary, 27 yield) and 75 variables, A collapse load of e = 2.6352
was obtained; this is about 0,3% greater than the exact solution of 2,627 reported by
Cinquini et al, [16]. The plastic regime corresponding to the optimal solution is
shown in Fig. 8b where the numbers refer to node points, It is clear that hinge
circles (m=1) developed at stations 6 and 9, and of the nine nodes only node 1 is
unyielded, For this case, two other meshes, h = 0,25 and h = 0,0625, were also used:
the computed collapse multipliers were 12,5887 (-1,5%) and 2.6276 (0.02%),
respectively.

The finite difference discretization with h = 0,125 was considered to be
sufficiently accurate, and was therefore adopted for performing a series of analyses
of hydrostatically loaded shell with varying upper edge supports (i.e. free, simply
supported, or fixed) and shell parameter «. These results are shown in Figs. 9(a-c)
as discrete points superimposed on the analytically derived curves of Cinquini et al,
[16]; close correlations between the LP solutions and the analytical results are
obtained in all cases, Note that the collapse loads for long shells (large a) tend to
be the same for all three boundary conditions, This was expected as the limit loads
for long, hydrostatically loaded shells depend on the support conditions at their
remote upper edges,

5, CONCLUSIONS

(a) The mathematical programming approach to limit analysis problem is simple and
can be systematically set up,

(b) Easy extensions of the present study include the calculations of collapse
loads for shells and plates with other boundary conditions, different axisymmetric

- 13 -



loadings, varying piecewise constant thicknesses, and even [16] some degree of
material anisotropy. Extension to non-zero axial force for the case of the
cylindrical shell is simple, however, a three-dimensional yield surface needs to be be
used; yield vertices become three-component vectors instead of two as with the
two-dimensional case,

(c) The mathematical programming formulation eliminates the difficult step of
constructing admissible stress fields and feasible collapse mechanism, as would be
required in analytical techniques, '

(d) A disadvantage of the method stems from the inaccuracy produced by the
discretization process. The computed collapse load may not be a lower bound solution
since unchecked points may have yielded, It is therefore important to carry out
sensitivity analyses to obtain indication of the accuracy obtained.

(e) The adoption of a piecewise linear approximation to the vield surface is not a
major shortcoming since better yield polygons, involving more vertices, can be used
without significant computational cost, With vertex formulation, the number of
variables increase as a result but not the number of constraints.
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