• Title/Summary/Keyword: Pickup coil

Search Result 61, Processing Time 0.024 seconds

Low Frequency Noise Properties of YBCO SQUID Gradiometers (YBCO SQUID gradiometers의 저주파 잡음 특성 연구)

  • 황태종;김인선;김동호;박용기
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.68-73
    • /
    • 2002
  • We have fabricated YBCO SQUID 1st order gradiometers on $30^{\circ}$STO bicrystal substrate. The pickup coil size was 3.8mm$\times$3.8mm and baseline was 5mm. Three types of SQUID gradiometer were designed and tested for unshielded operation; solid pickup coil, pickup coil consisting of 4 parallel $ 50\mu\textrm{m}$-wide loops, and solid pickup coil with flux dam. We have investigated external magnetic field dependence of the SQUID gradiometers on the magnetic field noiseproperties. Significant increase of low frequency noise with the application of static field has been observed in the case of parallel and flux dam type pickup coil above threshold field of $1.3 \mu$T. Magnetic field noise at 1 Hz measured in the magnetically shielding room was 30, 165, 480 fTcm/sup -1/Hz/sup -1/2/ for solid type and slot type and parallel loops type, respectively.

  • PDF

The Development of Chestpiece Detecting Techniques for Physical Assessment Trainer (청진 훈련 모형용 청음판 검출 알고리즘 개발)

  • Chang, In Bae;Oh, Soo Hwan;Lee, Young Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.527-534
    • /
    • 2014
  • The control system of human torso model and driving system of stethoscope for physical assessment trainer are developed. The detecting characteristics of circular pickup coil which is driven by square wave voltage signal with resonance frequency of LC circuits are investigated and it is confirmed that the pickup coil can detect the existence of chestpiece near the coil region. The control system of human torso model is composed of 8 channel pickup coils, Mp3 and Bluetooth module. The driving system of stethoscope is composed of chestpiece with contact switch and Bluetooth headset. The chestpiece detecting algorithm check the contact of chestpiece with human body model first and excite the pickup coil sequentially to find the location. The proposed system can be applied the physical assessment trainer.

First-order Wire-wound SQUID Gradiometer System Having Compact Superconductive Connection Structure between SQUID and Pickup Coil (SQUID와 검출코일의 초전도 결합방식이 개선된 1차 권선형 미분계 시스템)

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Kwon, H.;Kim, K.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • In order to have a superconductive connection between the wire-wound pickup coil and input coil, typically Nb terminal blocks with screw holes are used. Since this connection structure occupies large volume, large stray pickup area can be generated which can pickup external noise fields. Thus, SQUID and connection block are shielded inside a superconducting tube, and this SQUID module is located at some distance from the distal coil of the gradiometer to minimize the distortion or imbalance of uniform background field due to the superconducting module. To operate this conventional SQUID module, we need a higher liquid He level, resulting in shorter refill interval. To make the fabrication of gradiometers simpler and refill interval longer, we developed a novel method of connecting the pickup coil into the input coil. Gradiometer coil wound of 0.125-mm diameter NbTi wires were glued close to the input coil pads of SQUID. The superconductive connection was made using an ultrasonic bonding of annealed 0.025-mm diameter Nb wires, bonded directly on the surface of NbTi wires where insulation layer was stripped out. The reliability of the superconductive bonding was good enough to sustain several thermal cycling. The stray pickup area due to this connection structure is about $0.1\;mm^2$, much smaller than the typical stray pickup area using the conventional screw block method. By using this compact connection structure, the position of the SQUID sensor is only about 20-30 mm from the distal coil of the gradiometer. Based on this compact module, we fabricated a magnetocardiography system having 61 first-order axial gradiometers, and measured MCG signals. The gradiometers have a coil diameter of 20 mm, and the baseline is 70 mm. The 61 axial gradiometer bobbins were distributed in a hexagonal lattice structure with a sensor interval of 26 mm, measuring $dB_z/dz$ component of magnetocardiography signals.

  • PDF

Fabrications and measurements of single layer YBCO dc-SQUID magnetometers designed with parallel-loop pickup coil (Parallel-loop 검출코일을 가지는 단일층 YBCO dc-SQUID 자력계의 제작 및 특성 연구)

  • 유권규;김인선;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • We have designed and fabricated the single-layer high $T_{c}$ SQUID magnetometer consisting of a directly coupled grain boundary junction SQUID with an inductance of 100 pH and 16 nested parallel pickup coils with the outermost dimension of 8.8 mm ${\times}$ 8.8 mm. The magnetometer was formed from a YBCO thin film deposited on an STO(100) bicrystal substrate with a misorientation angle of $30^{\circ}$. The SQUID magnetometer was further improved by optimizing the multi-loop pickup coil design for use in unshielded environments. Typical characteristics of the dc SQUID magnetometer had a modulation voltage of 40 $\mu\textrm{V}$ and a white noise of $30fT/Hz^{1}$2/. The SQUID magnetometer exhibited a 1/f noise level at 10 Hz reduced by a factor of about 3 compared with that of the conventional solid type pickup coil magnetometers and a very stable flux locked loop operation in magnetically disturbed environments.s.

  • PDF

Improvement of Dynamic Characteristics for Optical Pickup Actuator by Changing Coil Shape (코일형상 변화에 의한 광픽업 액츄에이터의 동특성 개선)

  • Kim Choong;Song Myeong-Gyu;Lee Dong-Ju;Park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.69-70
    • /
    • 2005
  • In this paper, slim type optical pickup actuator was fabricated and its FE model was tuned to experimental results through precise coil models. In order to widen its control bandwidth, stiffness of moving parts was increased by changing shape of coil section. Finally, we checked that flexible mode frequency and gain margin was increased.

  • PDF

Optimal Design of the Optical Pickup Actuator Coil (광픽업 구동기 코일최적설계)

  • Yoon Young, Kim;Woochun, Kim;Jae Eun, Kim
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.352-355
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

  • PDF

A Helmet-type MEG System with $1^{st}$ order SQUID Gradiometer Located in Vacuum (진공조에 위치한 1차 SQUID 미분계를 이용한 헬멧형 뇌자도 장치의 제작)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kim, J.M.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.78-82
    • /
    • 2009
  • We have fabricated a helmet type magnetoencephalogrphy(MEG) with a $1^{st}$ order gradiometer in vacuum to improve the signal-to-noise ratio(SNR) and the boil-off rate of liquid helium(LHe). The axial type first-order gradiometer was fabricated with a double relaxation oscillation SQUID(DROS) sensor which was directly connected with a pickup coil. The neck space of LHe dewar was made to be smaller than that of a conventional dewar, but the LHe boil-off ratio appeared to increase. To reduce the temperature of low Tc SQUID sensor and pickup coil to 9 K, a metal shield made of, such as copper, brass or aluminum, have been usually used for thermal transmission. But the metal shield exhibited high thermal noise and eddy current fluctuation. We quantified the thermal noise and the eddy current fluctuation of metal. In this experiment, we used the bobbin which was made of an alumina to wind Nb superconductive wire for pickup coil and the average noise of coil-in-vacuum type MEG system was $3.5fT/Hz^{1/2}$. Finally, we measured the auditory evoked signal to prove the reliability of coil-in-vacuum type MEG system.

  • PDF

Optimum Combination of Pickup Coil Type and Magnetically Shielded Room for Maximum SNR to Measure Biomagnetism (생체신호 측정을 위한 최대의 신호 대 잡음비를 가지는 검출코일의 형태 와 자기차폐실의 최적 조합)

  • Yu, K.K.;Lee, Y.H.;Kang, C.S.;Kim, J.M.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • We have investigated the optimum combination of the environmental noise condition and type of SQUID pickup coil in order to obtain maximum signal-to-noise ratio (SNR). The measurement probe consists of 1st order gradiometer with pickup coils of 100 mm, 70 mm, and 50 mm baseline length, a 2nd order gradiometer with 50 mm baseline, and a magnetometer. The pickup coils are fabricated by winding Nb wire on a bobbin with 200 mm diameter. Noise and heart signal of a healthy male were measured by various SQUID sensors with different types of pickup coils in various magnetically shielded rooms (MSR), and compared to each other. The shielding factors were found to be 43 dB, 35 dB and 25 dB at 0.1 Hz for MSR-AS, MSR-BS, MSR-CS, respectively. White noises were $3.5\;fT/Hz^{1/2}$, $4.5\;fT/Hz^{1/2}$ and $3\;fT/Hz^{1/2}$ for the 1st order gradiometers, the 2nd order gradiometers, and magnetometer for all MSRs. SNR of the magnetometer was up to 56 dB in MSR-AS, while the 1st order axial gradiometer with 70 mm baseline length was up to 54 dB in MSR-BS. The 2nd order axial gradiometer with 50 mm baseline length of pickup coil was found to be up to 40 dB in MSR-CS.

  • PDF

Optimal Design of the Optical Pickup Actuator Coil (광픽업 구동기 코일최적설계)

  • Woo Chul, Kim;Jae Eun, Kim
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1147-1152
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

Optimal Coil Configuration Design Methodology Using the Concept of Equivalent Magnetizing Current (등가자화전류를 이용한 최적코일형상 설계방법)

  • Kim, Woo-Chul;Kim, Min-Tae;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.43-49
    • /
    • 2007
  • A new electric coil design methodology using the notion of topology optimization is developed. The specific design problem in consideration is to find optimal coil configuration that maximizes the Lorentz force under given magnetic field. Topology optimization is usually formulated using the finite element method, but the novel feature of this method is that no such partial differential equation solver is employed during the whole optimization process. The proposed methodology allows the determination of not only coil shape but also the number of coil turns which is not possible to determine by any existing topology optimization concept and to perform single coil strand identification algorithm. The specific applications are made in the design of two-dimensional fine-pattern focusing coils of an optical pickup actuator. In this method, the concept of equivalent magnetizing current is utilized to calculate the Lorentz force, and the optimal coil configuration is obtained without any initial layout. The method is capable of generating the location and shape of turns of coil. To confirm the effectiveness of the proposed method in optical pickup applications, design problems involving multipolar permanent magnets are considered.