• Title/Summary/Keyword: Picking Simulation

Search Result 37, Processing Time 0.025 seconds

A Study on Refrigerate Warehouse Facility Performance Planning for Picking and Replenishing Facility Using Simulation Method (냉장창고설비의 픽킹 및 재 보충설비계획문제의 연구)

  • Hwang Heung Seok;Jo Gyu Seong;Choe Bae Seok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1035-1041
    • /
    • 2003
  • Recent studies among various activities taking place in order-picking warehouse system have shown various researches to reduce the order-picking costs occupying more than half the total costs. One way of improving the warehouse system performance is to separate from a picking area and a reserve area in one unit rack. This study is concerned on the performance evaluation model for picking and replenishing facility of refrigerated warehouse using simulation method. In this study, we developed a mathematical model to compute the system performance solve this problem using simulation method. We demonstrate the system performance using AutoMod Simulator and verify the results to compare mathematical results of the system performance of warehouse system. A systematic approach proposed n this study for an optimal planning of order-picking warehouse is known as an effective method for planning of order-picking warehouse and a performance evaluation problem considering both picking and replenishment.

  • PDF

Transporter Operation Planning for Refrigerated Warehouse Using Simulation Method (냉장물류센터 내 운반장비 운영계획에 관한 연구)

  • Hwang, Heung-Suk;Kim, Ho-Gyun;Cho, Gyu-Sung
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.382-390
    • /
    • 2002
  • This paper deals with planning of order-picking warehouse considering the batch order picking for transportation equipments to pick consumers' orders at a time among order-picking methods and a systematic approach method in order to analyze the order-picking warehouse which can perform optimal operation. To estimate an operating time of transportation equipments to carry out order-picking, this paper suggests three operations : first, to design the refrigerated warehouse using warehouse design parameters, second, to calculate the travel time of transporters considering four types of times with the probabilistic picking frequency, and third, to analyze an order-picking warehouse to construct a simulation model with the AutoMod as a simulation tool. We apply this model to a refrigerated warehouse company in Busan.

Warehouse Picking Efficiency influence Analysis of Product location by Delivery Frequency (출고빈도별 제품 로케이션 배치에 따른 피킹효율 영향 분석)

  • Yim, Woo-Taek;Park, Hyun-Ho;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.363-368
    • /
    • 2014
  • During the fierce competition among the companies, improvement of logistics center managing efficiency is importantly recognized. Among them, studies on improvement of picking work process on about 55% of logistics center managing costs are continuously conducted. And, most of studies focus on analysis on strengths and weaknesses of picking method performable on the stage of logistics center design, etc, so the purposes of this research are to define load location rule by product releasing frequency in logistics managing environment based on conveyer and suggest expected effects by simulation analyzing method to improve picking managing efficiency.

Application of Bucket-brigades to Order Picking in Warehouses (물류창고에서 Bucket Brigade를 활용한 오더피킹에 대한 연구)

  • Koo, Pyung-Hoi
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.333-342
    • /
    • 2008
  • Warehouses form an important link in a supply chain network. Among a variety of activities in warehouses, order picking is the process of retrieving a number of items out of storage to meet customer orders. Today, as the transactions through direct sales are wide spread, warehouses often receive a large amount of small orders to be handled within tight time windows, which makes fast and efficient order picking more important than ever. This paper examines a new order picking method where the concept of bucket brigade (BB) is applied. Bucket brigade is a way of dynamically coordinating workers who progressively perform a set of operations along a flow line. In bucket brigades, a worker is not assigned his jobs in a static way. Each worker takes a job from his predecessor when he is free. We identify some considerations when bucket brigades are applied to order picking activities. A new BB picking protocol is presented to improve existing BB picking protocols. Through simulation experiments, the performance of BB order picking is evaluated under various logistics environments.

A Single Order Assignment Algorithm Based on Multi-Attribute for Warehouse Order Picking (물류창고 오더피킹에 있어서 다 속성 기반의 싱글오더 할당 알고리즘)

  • Kim, Daebeom
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Recently, as the importance of warehouses has increased, much efforts are being made to improve the picking process in order to cope with a small amount of high frequency and fast delivery. This study proposes an algorithm to assign orders to pickers in the situation where Single Order Picking policy is used. This algorithm utilizes five attributes related to picking such as picking processing time, elapsed time after receipt of order, inspection/packing workstation situation, picker error, customer importance. A measure of urgency is introduced so that the units of measure for each attribute are the same. The higher the urgency, the higher the allocation priority. In the proposed algorithm, the allocation policy can be flexibly adjusted according to the operational goal of the picking system by changing the weight of each attribute. Simulation experiments were performed on a hypothetical small logistics warehouse. The results showed excellent performance in terms of system throughput and flow time.

Order Batch Formations for Less Picker Blocking in a Narrow-Aisle Picking System

  • Hong, Soondo
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.289-298
    • /
    • 2015
  • This paper analyses the best batch formations for order picking throughput in narrow-aisle order picking systems. Our analytical comparison finds that a high pick density variation leads to a heavy picker blocking. Simulation experiments show that a distance-based batching algorithm reduces picker blocking by decreasing the number of aisles visited and stabilizing the variation in number of picks per aisle by packing orders tightly, and that the solution quality and mechanism for determining the batch size dictated by the sorting strategy causes varying amounts of blocking. We conclude that combining a distance-based batching method with an appropriate batch sizing strategy will reduce picker blocking and shorten travel in narrow-aisle picking systems.

The Effect of Warehouse Layout Design on Order Picking Efficiency

  • Kim, Hyun;Hur, Yun-Su;Bae, Suk-Tae
    • Journal of Navigation and Port Research
    • /
    • v.33 no.7
    • /
    • pp.477-482
    • /
    • 2009
  • In this paper the order picking problem in warehouses is considered, a topic which has received considerable attention from the international academic body in recent years. The order picking problem deals with the retrieval of order items from prespecified locations in the warehouse, and its objective is usually the minimization of travel time or travel distance. Hence, a well-thought order picking policy in combination with an appropriate storage policy will enhance warehouse efficiency and reduce operational costs. This paper starts with a literature overview summarizing approaches to routing order pickers, assigning stock-keeping units to pick locations and designing warehouse layouts. Since the layout design might affect both storage and routing policies, the three factors are interdependent with respect to order picking performance. To test these interdependencies, a simulation experiment was set up, involving two types of warehouse layout, four types of storage policy, five well-known heuristics and five sizes of order picking list. Our results illustrate that from the point of view of order picking distance minimization it is recommended to equip the warehouse with a third cross aisle, although this comes at the cost of a certain space loss. Additionally, we propose a set of most appropriate matches between order picking heuristics and storage policies. Finally, we give some directions for further research and recommend an integrated approach involving all factors that affect warehouse efficiency.

A Study on the Improvement of Order-Picking Operation in S-Automobile Parts Distribution Center (S-자동차 부품 물류센터에서 오더픽킹 작업능력 향상을 위한 연구)

  • Park, Jung-Hyun;Park, Yang-Byung
    • IE interfaces
    • /
    • v.17 no.4
    • /
    • pp.450-458
    • /
    • 2004
  • S-Distribution Center supplies parts to three plants of K-automobile manufacturing company. Since the three plants employ the JIT production system, it is important for S-Distribution Center to deliver small quantities of parts frequently and quickly on time. This paper presents a case study on the improvement of order-picking operation in S-Distribution Center. The study is focused on the reductions of move time and waiting time by redesigning the parts storage location, picking-order terminal location, retrieval policy, and equipment operation policy. The proposed operation system for S-Distribution Center is evaluated through a simple computation analysis and computer simulation. Furthermore, the reducible numbers of equipment and order pickers are investigated by performing a sensitivity analysis.

A Study on a Performance Evaluation of Transporters in Refrigerate Warehouse Based on Simulation Method (시뮬레이션 방법을 이용한 냉장물류센터 운반설비의 적정 계획)

  • Hwang, Heung-Suk;Cho, Gyu-Sung
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.105-110
    • /
    • 2003
  • This paper deals with a performance evaluation model of transporters in refrigerate warehouse. This study focussed on determining refrigerate warehouse design to minimize the expected travel time to improve the transporter performance and to minimize the operating costs. This study proposes the important detail aspects of refrigerate warehouse design, operational parameters and congestions. For solving this problem, we have shown a mathematical model to compute the initial value of the system performance and also a simulation model using AutoMod. A systematic approach proposed in this study for an optimal planning of order-picking warehouse is known as an effective method for the planning of order-picking warehouse and a performance evaluation problem of refrigerate warehouse operation.

A Simplified Optimization in Cotton Bale Selection and Laydown

  • Kang, Bok-Choon;Park, Shin-Woong;Koo, Hyun-Jin;Jeong, Sung-Hoon
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.55-58
    • /
    • 2000
  • We present a new approach to bale laydown grouping, which improves the laydown to laydown uniformities, compared to conventional approaches. In this approach, we use a frequency-relative picking method based on an HVI quality index for cotton bale selection and laydown formation. We demonstrate the effectiveness of this approach by computer simulation on real HVI data of 1500 cotton bales. Simulation results show that the proposed method significantly outperforms random picking.

  • PDF