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ABSTRACT 

This paper analyses the best batch formations for order picking throughput in narrow-aisle order picking systems. Our 
analytical comparison finds that a high pick density variation leads to a heavy picker blocking. Simulation experi-
ments show that a distance-based batching algorithm reduces picker blocking by decreasing the number of aisles vis-
ited and stabilizing the variation in number of picks per aisle by packing orders tightly, and that the solution quality 
and mechanism for determining the batch size dictated by the sorting strategy causes varying amounts of blocking. 
We conclude that combining a distance-based batching method with an appropriate batch sizing strategy will reduce 
picker blocking and shorten travel in narrow-aisle picking systems. 
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1.  INTRODUCTION 

Picking orders in batches from an order picking 
system (OPS) is generally favored when customers’ de-
mands create a large number of small orders. When 
multiple pickers are needed to obtain the required thro-
ughput in the picking process, order picking perform-
ance often declines due to picker blocking. In particular, 
narrow-aisle picking environments, which are attractive 
for their storage capability, can produce significant pic-
ker blocking even though one-way traversal routing is 
used to mitigate congestion (Gue et al., 2006). Popular 
distance-based batching approaches perform efficiently 
when there are a small number of pickers, but become 
less productive due to congestion when staffing multiple 
pickers for a higher demand fulfilment. For example, in 
Ruben and Jacobs’s study (1999), order picking produc-
tivity per person declines when batching. Thus, resolv-
ing congestion is critical for improving work force utili-
zation (Tompkins et al., 2003). 

This paper examines environments with multiple 
narrow-aisles where the order picking is managed by 
distance-based order batching algorithms and the choice 

of a sorting strategy as well as a storage policy. We ex-
pect that when a batching algorithm aggregates orders 
with the same number of items to reduce the expected 
travel distance, the work load per unit distance will fluc-
tuate depending on the location of the items and the 
length of the routes. We also expect that the choice of 
sorting strategy will determine the batch size, whereas 
the choice of storage policy (slotting strategies) will 
reduce expected order picking travel distance.  

The previous literature on picker blocking and pick 
density variations tends to study them separately. Ruben 
and Jacobs (1999), who conduct a comparative study 
investigating picker blocking, do not investigate the rela-
tionship between picker blocking and batching algo-
rithms. Picker blocking literature (Gue et al., 2006; Parikh 
and Meller, 2009; Parikh and Meller, 2010; Skufca, 2005) 
is silent on the relationship between batching and both 
pick density and picker blocking. Therefore, they explic-
itly relax the uniform pick density commonly imposed 
in the literature. For example, in our simulation study of 
narrow-aisle picking (see section 5.3), we find that bat-
ches assembled by a strategy that determines batch size 
by number of orders encounters less picker blocking than 
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those built by a strategy in which the number of items 
limits the batch size, even though both batches exhibit a 
similar pick density. To our knowledge, this observation 
has not been reported.  

We contribute to the literature by comparing all 
relevant analytical models of pick density variations and 
picker blocking and then recommending an efficient 
batching strategy (i.e., batch formation) that considers 
picker blocking in distance-based order batching. The 
remainder of this paper is organized as follows. Section 
2 reviews picker blocking models in the literature. We 
define the picker blocking issues in batch picking and 
the scope of this paper in Section 3. Section 4 compares 
the analytical models to obtain knowledge on picker 
blocking in a narrow-aisle. Section 5 conducts a simula-
tion study of batch-sizing strategies, storage policies, 
and order picking system layouts and determines appro-
priate batching strategies for increased throughput by 
reducing picker blocking. We summarize the findings 
and offer suggestions for future research in Section 6. 

2.  LITERATURE SURVEY 

2.1 Distance-Based Batching Algorithm 

Batching algorithms help to aggregate batches in 
large-scale order picking situations. In general, distance-
based approaches with their relatively simple implemen-
tation (Ruben and Jacobs, 1999) are preferred for aggre-
gating orders whose items are closely located within a 
storage space. The literature (Ruben and Jacobs, 1999; 
De Koster et al., 1999; Gademann and Van de Velde, 
2005; Gademann et al., 2001; Hong et al., 2012) de-
scribes various algorithms that identify orders to be 
picked together for the purpose of reducing travel dis-
tances and number of trips.  

One popular large-scale batching algorithm is the 
seed algorithm, which is attractive because of its simple 
implementation and excellent computational efficiency 
(De Koster et al., 1999). In particular, De Koster et al.’s 
algorithm (De Koster et al., 1999) improves batching 
quality by using the following procedure: 1) select a 
seed having the largest number of aisles; 2) choose the 
order minimizing the number of additional aisles; and 3) 
update the seed when adding an order to it.  

De Koster et al. (1999) also suggest that the saving 
algorithm is preferable to the seed algorithm. The saving 
algorithm uses a save list to choose a better alternative 
between possible batches. For example, a modified Clarke 
and Wright method (De Koster et al., 1999; Clarke and 
Wright, 1964), termed CW II, obtains a pair of appro-
priate batch candidates from a save list and switches 
orders in two candidates to reduce travel. The save list is 
updated until there is no saving pair left.  

The route-packing based order batching procedure 
(RBP) algorithm in Hong et al. (2012) produces a high-
quality solution in a short time. It uses a packing method 

to group orders into appropriate batches. Their work 
also finds that the gap error is less than 3% in a large-
scale problem.  

2.2 Picker Blocking in Narrow-Aisle Picking 
Systems 

A narrow-aisle system is typically characterized by 
no-passing in an aisle. The congestion created by the no-
passing condition is termed picker blocking (Figure ). 
Several researchers (Gue et al., 2006; Parikh and Meller, 
2010; Skufca, 2005; Hong et al., 2013; Hong et al., 
2015a) have investigated the effects of picker blocking 
on order picking performance. For example, Skufca (2005) 
presents a k-picker congestion model of a circular no-
passing system in the case of infinite walk speed. Gue et 
al. (2006) address two-picker congestion models of a 
parallel-aisle pick area approximated by a circular no-
passing system considering infinite and unit walk speeds. 
In the unit walk speed case, the unit walk time to pass a 
pick face is identical to the unit pick time. Gue et al. also 
conduct simulation experiments to investigate picker 
behavior under more practical walk speed assumptions, 
identifying the effects of pick density on narrow-aisle 
order picking performance under the single-pick assum-
ption where a picker has at most one pick at a pick face. 
They conclude that a batch picking strategy in narrow-
aisle OPSs is advantageous when the pick density is 
either very low or very high.  

Parikh and Meller (2010) develop two-picker con-
gestion models under extreme walk speed assumptions 
where repeated picks at a pick face are allowed, which 
they call a non-deterministic picking situation. They 
find that picker blocking can be significant when there is 
high variation in the pick density. Their observation, 
however, is flawed, since they compare the amount of 
picker blocking over pick density, which does not stand 
for the same work load.  

Hong et al. (2015a) show that the circular-aisle 
congestion model is applicable for a bucket brigade or-
der picking situation. In order picking situations, bucket 
brigades provide self-organizing and self-balancing 
characteristics. The authors prove that when the back-
ward walk time is instantaneous and the hand-off time is 
zero, the congestion model of bucket brigade order pick-
ing is equivalent to the congestion model of the circular-
aisle abstraction. In Hong et al. (2015b), the extension 
for order batching confirms the analytical model’s rigid-
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Two picks
for each picker

 
Figure 1. Picker blocking (Parikh and Meller, 2009). 
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ity and the authors apply the analytical model to situa-
tions of blocking mitigation. The authors describe the 
development of an extreme control model in a bucket 
brigade order picking system. 

2.3 Picker Blocking in Distance-Based Order 
Batching 

Ruben and Jacobs (1999), who indicate that con-
gestion affects the selection of batching procedures and 
storage policies, find that a turnover-based storage pol-
icy (popular products as measured by demand are stored 
in desirable locations measured by the distance from the 
input/output point) generates more congestion than ran-
dom storage policies. In proposing a batching algorithm 
which minimizes travel distance, Hong et al. (2012) re-
port a small increase in retrieval time due to picker 
blocking. Their resulting order-picking operations are 
relatively robust to picker blocking.  

We note that Ruben and Jacobs (1999) do not es-
tablish a relationship between picker blocking and 
batching algorithms, nor do they give a clear theoretical 
rationale for the congestion observed. Hong et al. (2012) 
report limited picker blocking when their proposed bat-
ching algorithm is used to generate batches, but they do 
not explain why their algorithm would experience rela-
tively little picker blocking.  

2.4 Issues 

A review of the available literature also identifies a 
critical issue regarding narrow-aisle batch picking: no 
simulation or analytical studies have fully investigated 
the relationship between picker blocking and the batch-
ing algorithm even though, in practice, the algorithm 
may have a significant effect on pick density level and 
variation. Parikh and Meller (2010)’s comparison of 
high and low pick time variations does not definitively 
show that a high variation over the same work load re-
sults in more picker blocking. Neither Ruben and Jacobs 
(1999) nor Hong et al. (2012) identify the batch forma-
tions which increase the variation of pick time. 

3. PROBLEM DEFINITION 

3.1 Picker Blocking in Narrow-Aisle Picking 
Systems 

In narrow-aisle picking systems, pickers travel thro-
ugh one-way aisles to retrieve items from shelves and 
place them in a cart as schematically illustrated in Fig-
ure 2. When an aisle includes no items assigned to the 
picker, the aisle can be skipped to shorten the travel dis-
tance if the unidirectional characteristic of all of the 
aisles can still be maintained. Picker blocking occurs in 
an aisle when an upstream picker cannot pass a down-
stream picker (see Figure 1).  

pick location

Load/Unload  station

cross aisle

cross aisle

aisle rack

 
Figure 1. A Narrow-Aisle System and a Routing Example 

(Modified from Gademann and Van de Velde, 
2005). 

 
Order picking throughput deteriorates as much as 

the blocking delay. When each picker is blocked b(k) 
fraction of the time, 0 ≤ b(k) ≤ 1, the throughput is: 
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[ ]

⎡ ⎤
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E ptk k b k
E pt t t
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where E[pt] represents the expected number of picks at a 
stop. The time to pick (tp) represents the average time 
the picker is stopped, including the time spent picking 
items. The time to walk (tw) indicates the average time 
to walk past a single location in the pick face.  

3.2 Batch Algorithms and Relevant Batch-Sizing 
and Storage Methods 

In many practical situations, order sizes are relati-
vely small compared to cart capacity and the orders are 
batched to improve picking throughput. Since total retri-
eval time, which is dependent on the travel distance, drops 
when pickers collect multiple orders in the same trip, the 
batching algorithm has to efficiently reduce both the 
number of trips and the travel distance.  

In addition, managers need to be able to change both 
the batch-sizing strategy and storage policy to maximize 
order picking performance. The batch-sizing strategy, 
which is strongly associated with sorting strategy, im-
pacts the batching algorithm by affecting the units of 
measure that determine the batch size. First, the batch 
size is capacitated by the number of orders (i.e., order-
capacitated batch-sizing). Typically, each picker’s cart 
carries bins or boxes that hold each order separately in a 
sort-while-pick operation. Thus, a batch is determined by 
the number of bins, i.e., the number of orders that fit on 
the cart. Second, each batch also can include the same 
number of items (i.e., item-capacitated batch-sizing). In 
the pick-then-sort strategy, all items are placed in a 
common bin and later separated into orders in a secon-
dary sorting operation. The maximum batch size is de-
termined by the number of items that fit on the cart.  

Storage policies (i.e., slotting strategies) also affect 
picker blocking. Dedicated or class-based storage poli-
cies that store the more frequently requested items closer 
to the loading station increase pick density in these areas, 
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which tends to increase picker blocking. 
Finally, picker blocking (b(k)) is associated with 

the various impacts of batching algorithms, batch-sizing 
strategies, and storage policies upon batch formations. 
Yet, the batching algorithms now used only optimize the 
distance-related component of the objective function and 
the storage policy is associated with picker blocking. How-
ever, impacts by batching solution quality and batch-
sizing strategy are not studied well.  

3.3 Scope of Study 

First, we compare less pick and heavy pick varia-
tion cases over E[pt] from models in the literature. Sec-
ond, based on the knowledge gained we examine batch 
formations and picker blocking under different batching 
algorithms, batch-sizing strategies, and storage policies. 
We focus on large-scale batching algorithms because 
picker blocking is a concern in large-scale situations.  

4.  ANALYTICAL COMPARISON IN A 
CIRCULAR-AISLE SYSTEM 

This section examines the impacts on picker block-
ing from the variations in the number of picks at a stop. 
We consider the circular-aisle abstraction and review the 
analytical picker blocking models. We then define an 
equivalent work load condition, conduct the analytical 
comparison results, and draw new insights.  

4.1 A Circular-Aisle Abstraction and Picker 
Blocking Models 

To simplify the analysis of the picker blocking phe-
nomena, a picking system with multiple narrow aisles is 
often modelled as a single circular order picking aisle as 
shown in Figure 3. This abstraction was introduced by 
Skufca (2005) and applied by Gue et al. (2006), Parikh 
and Meller (2010), and Hong et al. (2013) for a narrow-
aisle system. The circular order picking aisle consists of 
n pick faces. Pickers move only in a clockwise direction, 
meaning that they travel through the aisle in only one 
direction. Pick time is constant regardless of the pick 
face characteristics such as shelf height. At a pick face, 

pickers pick with a probability p (q = 1-p). The pick 
time, tp, and the walk time between two pick faces, tw, 
are deterministic.  

There are two restrictive cases of pick: walk times: 
1) walk speed is equal to unit pick time per pick face 
(pick: walk time = 1: 1); and 2) walk speed is infinite 
(pick: walk time = 1: 0). As a performance measure, the 
percentage of time blocked has been evaluated, denoted 
as bs

tp:tw(2) and bm
tp:tw (2), where s and m stand for a 

single-pick situation and a multiple-pick situation, re-
spectively, and tp: tw represents the pick: walk time 
ratio. The value in the parentheses indicates the number 
of pickers in the system. In the single-pick situation, 
Gue et al. (2006) presented closed-form analytical ex-
pressions for bs

1:1(2) and bs
1:0(2) as shown in Table , row 

1. Parikh and Meller (2010) and Hong et al. (2013) ad-
dressed multiple-pick models (bm

1:1(2) and bm
1:0(2)) as 

shown in Table , row 2. 

4.2 Comparison of Single-Pick versus Multi-Pick 
Models  

The following theorem shows that multiple-picks at 
a particular pick face produces more picker blocking in 
a circular-aisle abstraction for the two pick: walk ratios 
considered above.  
 
Theorem 1. When the walk speed is very slow or very 
fast (i.e., pick: walk time = 1: 1 and 1: 0), allowing mul-
tiple-picks at a pick face always creates more picker 
blocking than restricting to single-pick at a pick face. 
 
Proof. The comparison is performed for equivalent work-
load, i.e., equivalent number of picks per pick face. Let u 
denote the average number of picks at a pick face. The 
multiple-pick model uses u ≠ p by definition, unlikely in 
the single-pick model. We use the relationship between p 
and u developed by Parikh and Meller (2009):  

( ) 11
1

+− + −
= +

−

m m
mp mp m p

u mp
p

  
Figure 3. A circular order picking aisle (Gue et al., 2006).

Table 1. The Percentage of Time Blocked when Two 
Pickers Work (p = pick density, n = the number 
of pick faces)  

 Pick: walk time Analytical models  

Single-pick 1: 1 
( )

( )( )2 2

1

1 1 2

−

− + −

p p

n p p
(2)

 1: 0 ( ) ( )
1

2 1 1
−

− + −
p

p n p (3)

Multiple-picks 1: 1 2 1+ −
p

p n
 (4)

 1: 0 ( )
1

2 1+ −n p
 (5)
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where m stands for the maximal number of picks at a 
pick face; m is infinite in our model. Next, we simplify 
the relationship as u = p/(1-p) or p = u/(1+u) in order to 
compare the previous two models with Gue et al.’s mo-
dels. By definition, u is greater or equals 0 and less than 
or equals 1, and n is always greater than 1 because the 
single-pick situation requires spaces for two pickers. 
When pick: walk time =1: 1, Eq. (4) minus Eq. (2) is 
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2 1 1 2 1 2

−
−
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u u n n
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Because 0 ≤ u ≤1 and n ≥ 2, Eq. (4) minus Eq. (2) 

is always greater than or equals 0. Thus, Eq. (4) is al-
ways larger than or equals Eq. (2). 
When pick: walk time =1: 0, Eq. (5) minus Eq. (3) is 
 

1 1
2 2   2 2

+ −
−

+ + − − + −
u u

u un u u nu u
  

= ( )
( )( )

22 1
2 3 2   

−
+ + − +

u n
un u un u

 

 
Because 0 ≤ u ≤ 1 and n ≥ 2, Eq. (5) minus Eq. (3) 

is always greater than or equals 0. Thus, Eq. (5) is al-
ways larger than or equals Eq. (3).  

 
End of proof. Theorem 1 shows that when the work load 
is identical, the multiple-pick models experience heavy 
picker blocking. Further, note that the variation in pick 
density of the multiple-pick situation equals p/(1-p)2 = 
u(1+u), whereas the variation in pick density of the sin-
gle-pick situation is u(1-u). A variation of pick time at a 
stop should be a managerial concern for less picker 
blocking. However, as discussed in Section 3, a practical 
batch picking can occur in a narrow-aisle picking system 
with different batching algorithms, batch-sizing strategies, 
and storage policies. 

5.  SIMULATION COMPARISON IN A 
NARROW-AISLE PICKING SYSTEM 

Our simulation study generalizes the analytical re-
sults into multiple-aisle cases, where a routing algorithm 
modulates the pick density to shorten the total travel 
distance, and repeats analysis of picker blocking over 
the variation of pick density. Instead of the variation of 
pick density, we measure the variation of the number of 
picks in an aisle, which explains the number of picks at 
a pick face as well as the routing effect.  

5.1 Experiment Design 

Using a multiple, narrow-aisle system (Figure 2) 
composed of a two-aisle and a ten-aisle, we compare 
four batching algorithms: FCFS (batches created from a 
sequence of orders in a first-come first-served manner); 
Seed (the seed algorithm developed in De Koster et al., 
(1999)); CW II (the Clarke and Wright algorithm (II) in 
De Koster et al. (1999)), see Appendix A.1 for more 
detail; and RBP (the heuristic route-selection-based ba-
tching procedure developed by Hong et al. (2012)), see 
Appendix A.2 for more detail.  

The batch size is determined by the number of or-
ders (OCS, order-capacitated batch-sizing) and the num-
ber of items (ICS, item-capacitated batch-sizing). We 
assume that items are stored in random locations in the 
two-aisle order picking system. We allow the random 
storage policy (RSP) and the class-based storage policy 
(CSP) in the ten-aisle order picking system. The class-
based storage policy determines item locations using a 
within-aisle class-based storage policy where the A: B: 
C ratio of demand is 0.7: 0.2: 0.1. Further, class A, B, 
and C items are stored in aisles 1-2, 3-4, and 5-10, re-
spectively. The details of the scenarios are summarized 
in Table 2 and the results are summarized in Section 5.3. 

Since order picking profiles are diverse over indus-
tries, we consider five additional scenarios: large order 
size; large batch size; more pickers; faster pickers; and 
different size of picking system. The large order size 
scenarios set average order size = four items (uniform [2, 
6]). The item-capacitated batch-sizing scenarios set the 
capacity of the cart to 40 items to reflect the increase of 
the order size. The large batch size scenarios have 15 
orders per batch in the order-capacitated batch-sizing 
strategy and 30 items per batch in the item-capacitated 
batch-sizing strategy. The increased pickers scenarios 
assign ten pickers and the faster pickers scenarios use 
pick: walk time ratio = 1: 0.1. We also test a six-aisle 
order picking system. The results of the additional sce-
narios are discussed in Appendix A.3.  

We run fifty simulations for each scenario (see the 
Ruben and Jacobs (1999)’s simulation model) and com-
pare the percentage of time blocked, the number of 
picks in an aisle, and the standard deviation of the num-
ber of picks in an aisle (STD). Experiment profiles and 
parameters are summarized in Table 3.  

5.2 Correlation Analysis 

A correlation analysis to detect significance be-
tween the variation in the number of picks and picker 
blocking shows that the correlation coefficient of the 
variation in the number of picks and picker blocking is 
0.73 (p-value < 2.2e-16 and degree of freedom (df) = 
3198), which indicates that the variation in the number 
of picks strongly affects picker blocking in batch pick-
ing (see Section 4). Figure 4 plots picker blocking over 
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the number of picks. Denser relationships, using the 
kernel density estimation in R with the default parame-
ter for the number of points per unit area, are darker in 
color. The highest density area is formed from the RBP 
and CW II algorithms on the left and bottom of the fig-
ure. The FCSF algorithm appears on the middle of the 
figure. The Seed algorithm shows weak density on the 
right side of the relationship analysis figure.  

All of the correlation coefficients in Table  indi-
cate a positive correlation between picker blocking and 
increased values of the experimental parameters. While 
most parameters result in very small differences in the 
correlation coefficient, the batching algorithm signifi-
cantly affects the correlation coefficients. 

5.3 Summary of Observations 

We note that less picker blocking does not imply 
higher productivity. Thus, we review our previous re-
sults from the perspective of order picking throughput. 
We also consider performance in terms of the total re-
trieval time and the total travel distance as depicted in 
Figure 5. Observe that RBP and CW II are relatively 
efficient despite picker blocking, while Seed produces 
very poor results due to heavy congestion. Figure 5 il-
lustrates the importance of selecting a batching algo-
rithm that reduces travel distance and does not create 
excessive picker blocking.  

Table 2. Two primitive order picking scenarios 

 Two-aisle scenario Ten-aisle scenario 
Number of aisles 
Number of pick faces per aisle 
Number of orders in a time window 
Number of time windows 
Pick: walk time ratio 
Number of pickers 
Setup time 
Capacity 

two 
50 pick faces 
500 orders 
eight 
1: 0.2 
five 
no 
ten orders or 20 items 

ten 
10 pick faces 
1,000 orders 
four 
1: 0.2 
five 
no 
ten orders or 20 items 

 
Table 3. Experiment profiles and parameters including both primitive and additional order picking scenarios 

Profiles Parameters 
Algorithms 
Batch-sizing strategy 
Storage policy 
Number of aisles 
Order size 
Pick: walk time ratio 
Batch size 
Number of pickers 

FCFS, Seed, CW II, RBP 
Order-based batch-sizing (OCS), Item-based batch-sizing (ICS) 
Random storage policy (RSP), Class-based storage policy (CSP) 
two, six, ten 
Uniform (1, 3), Uniform (2, 6) 
1: 0.2, 1: 0.1, 1: 0.05 
10 orders or 15 orders when SWP, 20 items or 30 items when PTS 
five, seven 

 

 
Figure 4. Correlation between “the standard deviation of the number of picks in an aisle” and “the percentage of time 

blocked.” 
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We summarize our three findings below.  
 

Observation 1) The batching algorithm chosen will im-
pact picker blocking. 

 
Intuitively, any distance-based batching algorithm 

could encounter significant congestion. Figure 6 details 
the throughput loss by the time blocked and the varia-
tion in the number of picks per aisle. As noted, the Seed 
algorithm creates heavy congestion compared to FCFS. 
However, the solutions using the CW II and RBP algo-
rithms exhibit less congestion compared to the Seed 
algorithm even though the CW II and RBP’s solutions 
are near optimal in terms of travel distance. Interestingly, 
the standard deviation of RBP is less than the standard 

deviation of the Seed algorithm, but is similar to the 
standard deviation of the CW II algorithm. However, 
RBP reduces congestion due to large reductions in the 
distance travelled and the relatively reasonable variation 
in picks per aisle. 

 
Observation 2) The batch-sizing strategy impacts picker 
blocking when combined with RBP and CWII.  

 
In the two-aisle picking system, only a single route 

is available under the traversal routing method. Under 
the item-capacitated batch-sizing strategy (ICS), as the 
orders are consolidated more optimally, the number of 
batches converges to a limiting lower bound of the num-
ber of batches and the batching algorithm reduces the 

Table 4. Correlation coefficient comparison over parameters across profiles 

Profiles Parameters Correlation coefficient df p-value 
Algorithms FCFS 0.14 798 8.743e-05 
 Seed 0.05 798 0.1228 
 CW II 0.65 798 < 2.2e-16 
 RBP 0.60 798 < 2.2e-16 
Batch-sizing OBS 0.75 1398 < 2.2e-16 
strategy IBS 0.80 1398 < 2.2e-16 
Storage RSP 0.90 398 < 2.2e-16 
policy CSP 0.96 398 < 2.2e-16 
Number 2 0.96 398 < 2.2e-16 
of aisles 6 0.95 398 < 2.2e-16 
 10 0.90 398 < 2.2e-16 
Order Uniform (1, 3) 0.90 398 < 2.2e-16 
size Uniform (2, 6) 0.92 398 < 2.2e-16 
Pick: walk 1: 0.2 0.90 398 < 2.2e-16 
time ratio 1: 0.1 0.85 398 < 2.2e-16 
Batch size 10 orders (OC) 0.86 198 < 2.2e-16 
 15 orders (OC) 0.81 198 < 2.2e-16 
 20 items (IC) 0.94 198 < 2.2e-16 
 30 items (IC) 0.89 198 < 2.2e-16 
Number 5 0.90 398 < 2.2e-16 
of pickers 7 0.90 398 < 2.2e-16 
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Figure 5. Comparison over four batching algorithms of: (a) total retrieval time; and (b) total travel distance. 
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variation in the number of picks across batches due to 
the ICS restriction. Therefore, picker blocking decreases.  

In the ten-aisle picking system, the challenge is to 
batch orders to achieve similarity in the number of aisles 
visited across the batches. When the number of items in 
a batch (i.e., ICS) determines the batch size, the particu-
lar routing option impacts the variation in the number 

picks in unit distance (i.e., number of picks per aisle). 
The variation in the number of picks per aisle increases 
depending on the number of routing options. Under the 
OCS strategy, there is less variation in picks per aisle 
and a short travel distance. The OCS strategy constrains 
each batch to have the same number of orders, not the 
same number of items. The expected number of picks per 
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Figure 6. The percentage of time blocked and standard deviation of the number of picks per aisle over FCFS, Seed, CW 

II, and RBP: (a) two-aisle picking system, random storage policy, order-capacitated batch-sizing strategy; (b) 
two-aisle picking system, random storage policy, item-capacitated batch-sizing strategy; (c) ten-aisle picking 
system, random storage policy, order-capacitated batch-sizing strategy; (d) ten-aisle picking system, random 
storage policy, item-capacitated batch-sizing strategy; (e) ten-aisle picking system, class-based storage policy, 
order-capacitated batch-sizing strategy; (f) ten-aisle picking system, class-based storage policy, item-capacitated 
batch-sizing strategy. 
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batch will typically be proportional to the length of route, 
i.e., the number of aisles visited. Compared to the ICS 
strategy, this characteristic produce less variation in the 
number of picks per aisle, which reduces picker blocking. 

 
Observation 3) Similar to Ruben and Jacobs (1999), class- 
based storage policy policies increase picker blocking.  

 
Even though the RBP algorithm implements a sort-

while-pick strategy (Figure 6 (c) and (e)), the productiv-
ity loss due to congestion is 5.3-9.6%. In other words, 
the class-based storage policy offsets the gain of the 
travel distance with the losses related to picker blocking 
(Figure 5). Observation 2 is still valid because each aisle 
stores items evenly under the class-based storage policy. 

Our previous observations continue to hold when 
the order size increases, the batch size varies, additional 
pickers are assigned, pickers walk faster, and the num-
ber of aisles differs. RBP under the OCS strategy regu-
lates picker blocking due to reduced variation in the 
time blocked. CW II scenarios under the OCS strategy 
and RBP scenarios under the ICS strategy also demon-
strate less picker blocking.  

6.  CONCLUSION AND FURTHER STUDY  

This paper investigated the relationship between 
picker blocking and order batching using a simple ana-
lytical comparison and several simulations. The method 
for constructing batches was shown to have a significant 
influence on the amount of picker blocking. A real bat-
ching situation confirmed that the distance-based batch-
ing method, Hong et al. (2012), combined with an ap-
propriate sorting strategy was effective for increasing 
order picking throughput.  

We noted that previous researchers were wary of 
batching approaches that minimize the travel distance 
because expected gains in terms of reduced travel dis-
tances could be offset by increased picker blocking. Our 
simulations ascertained that heavy picker blocking only 
occurs when batch picking is accompanied by high 
variations in pick density across the picking area. A 
conclusive simulation study showed that less variation 
in pick density could be achieved using a tightly packed 
distance-based batch formation. 

Most performance evaluation models for the design 
and operation of a warehouse implicitly assume that the 
batch-sizing strategy decision (i.e., the sorting strategy) 
is independent of the batching method (Ruben and 
Jacobs, 1999; De Koster et al., 1999; Gibson and Sharp, 
1992). We have suggested that picker blocking in a nar-
row-aisle configuration can be affected by the batch-
sizing strategy. When the number of aisles visited by an 
order picker is large, then the order-capacitated strategy 

improves order picking throughput by reducing picker 
blocking, whereas when the number of aisles is less (i.e., 
two-aisle picking system), the warehouse manager’s 
best choice is an item-capacitated strategy.  

Our findings have two implementable recommen-
dations. The order-capacitated strategy combined with 
the batching algorithm of Hong et al. (2012) is recom-
mended for a narrow-aisle picking system with multiple-
aisles. The item-capacitated strategy with an emphasis 
on minimizing the number of batches (i.e., packing each 
cart as tightly as possible with items) is recommended 
for situations with a single route. Even if demand in-
creases (assuming the number of pickers is fixed, the 
batch size also increases) a reduction in picker blocking 
will occur when the batches are well-packed.  

We suggest two future research directions. First, 
identification of a procedural method which can reduce 
the variation of pick density in small- and medium-scale 
situations is necessary. Second, explicitly modelling and 
controlling picker blocking offers the potential for im-
provements, particularly in high volume facilities.  
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APPENDIX 

A.1 Clarke and Wright II Algorithm (De Koster et 
al., 1999; Clarke and Wright, 1964) 

Step 1. Obtain the distance savings sij for all possible 
order pairs i, j when two orders are grouped, 
given the capacity of the pick device. 

Step 2. Sort the savings in decreasing order. 
Step 3. Select the pair with the highest savings. In the 

case of a tie, select a random pair. 
Step 4. Combine both orders to form a new cluster if 

allowed by the pickers’ capacity. If not, choose 
the next combination on the list and repeat 
Step 4. 

Step 5. If all order combinations have not been in-
cluded in a route, proceed with Step 1. In the 
calculation, all clusters are considered as or-
ders. Otherwise, finish. 

A.2 A Heuristic Route-Packing Based Order 
Batching Procedure (RBP)  

RBP takes advantage of the traversal routing method. 
When traversal routing methods are used, all possible 
routes can be constructed from the warehouse layout. 
RBP is composed of three steps:  
Step 1. Identify potential route sets. 
Step 2. Solve the route-bin packing problem (RPP) mo-

del heuristically; RPP is developed by assigning 
orders to routes directly, skipping the partitioning 
stage. Because RPP is still computationally dif-
ficult, the solution procedure considers two fur-
ther computational improvements: a partial route 
set and a truncated branch-and-bound approach. 

Step 3. Restore a feasible solution from the infeasible 
solution by the relaxed model. 

See Hong et al. (2012) for further details.  
 

 
 
 

 


