• Title/Summary/Keyword: Physiological damage

Search Result 515, Processing Time 0.027 seconds

Acid Rain and Airborne Pollutants Effects on the Needle of Some Conifer Species - A Case Study of Injured Index and Contact Angle - (산성우 및 대기오염물질이 몇 침엽수종 잎에 미치는 영향 - 피해도지수와 접촉각 중심으로 -)

  • 송근준;최영철;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.10 no.1
    • /
    • pp.76-86
    • /
    • 1996
  • We studied the degree of damage of trees which have been chronically damaged by environmental pollutants and the area of damaged stands in each region of the middle part of Korea with three tree species - Picea abies, Abies holophylla and Pinus densiflora. So as to diagnose the degree of tree damage in an early stage, We investigated injury index and measured contact angle and finally got the following results; 1) Visible and physiological damage such as the increase of injury index and the decrease of contact angle was serious centering around metropolitan cities live Seoul and Inchon; 2) The trees of all of 14 sites surveyed were damaged by environmental pollutants although there was difference to some extent among sites. Especially, the degree of damage appeared to be increased gradually in the western parts along including Inchon, the seacoasts. In fact, more systematic studies for this issue should be continued in other regions and countermeasures should be devised.

  • PDF

Mechanisms and Physiological Roles of Mitophagy in Yeast

  • Fukuda, Tomoyuki;Kanki, Tomotake
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2018
  • Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.

Exploiting tumor cell senescence in anticancer therapy

  • Lee, Minyoung;Lee, Jae-Seon
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.51-59
    • /
    • 2014
  • Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to tumorigenesis and is a determinant of the outcome of cancer treatment. However, the senescence-associated secretory phenotype, which contributes to multiple facets of senescent cancer cells, may influence both cancer-inhibitory and cancer-promoting mechanisms of neighboring cells. Conventional treatments, such as chemo- and radiotherapies, preferentially induce premature senescence instead of apoptosis in the appropriate cellular context. In addition, treatment-induced premature senescence could compensate for resistance to apoptosis via alternative signaling pathways. Therefore, we believe that an intensive effort to understand cancer cell senescence could facilitate the development of novel therapeutic strategies for improving the efficacy of anticancer therapies. This review summarizes the current understanding of molecular mechanisms, functions, and clinical applications of cellular senescence for anticancer therapy.

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Lee, Sun-Mee;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.199-199
    • /
    • 1998
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on retrograded aortic perfusion model. Hearts from Sprague-Dawley rats were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, 37) on a Langendorff apparatus. After equilibration, hearts were treated with ursodeoxycholic acid 10, 20, 40 and 800 M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. Following 25 min of global ischemia, ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular diastolic pressure, coronary flow and time to contracture formation) and biochemical (lactate dehydrogenase, LDH) endpoints were evaluated. In vehicle group, time to contracture formation (TTC) value was 19.5 min during ischemia, LVDP was 20.8 mmHg at the endpoint of reperfusion and LDH activity in reperfusate was 59.7 U/L. Cardioprotective effects of UDCA following ischemia/reperfusion consisted of a reduced TTC (EC$\_$25/ = 16.10 M), reduced LDH release and enhanced recovery of contractile function during reperfusion. Especially, the treatments of UDCA 80 M remarkably increased LVDP (68.1 mmHg) and reduced LDH release (33.2 U/L). Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage, in agreement with physiological and biochemical parameters.

  • PDF

Physiological and biochemical responses of elevated ozone on Pterocarpus indicus under well-watered and drought conditions

  • Baek, Saeng Geul;Park, Jeong ho;Kwak, Myeong Ja;Lee, Jong Kyu;Na, Chae Sun;Lee, Byulhana;Woo, Su Young
    • Forest Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.153-159
    • /
    • 2018
  • Seedlings of Pterocarpus indicus were grown in both well-watered and drought stress conditions in phytotron. Seedlings grown under well-watered and drought stress conditions were exposed to either combined or without ozone of 200 ppb for one month. First, the physiological responses to elevated ozone levels indicated a decreased biomass. The seedlings grown in arid soil and exposed to ozone showed less biomass than those grown in arid soil but not exposed to ozone. Moreover, all the seedlings except the well-watered and unexposed ones showed a significantly lower photosynthetic rate ($P_N$) over time. However, with the accumulation of ozone injuries, the antioxidant enzyme activities increased overall. In the study results, when exposed to ozone, the well-watered seedlings exhibited more antioxidative enzyme activity than did the seedlings grown in arid soil. Generally, P. indicus in arid soil suffered less damage from elevated ozone than did the well-watered plants.

Lichen as Bioindicators: Assessing their Response to Heavy Metal Pollution in Their Native Ecosystem

  • Jiho Yang;Soon-Ok Oh;Jae-Seoun Hur
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.343-353
    • /
    • 2023
  • Lichens play crucial roles in the ecosystems, contributing to soil formation and nutrient cycling, and being used in biomonitoring efforts to assess the sustainability of ecosystems including air quality. Previous studies on heavy metal accumulation in lichens have mostly relied on manipulated environments, such as transplanted lichens, leaving us with a dearth of research on how lichens physiologically respond to heavy metal exposure in their natural habitats. To fill this knowledge gap, we investigated lichens from two of South Korea's geographically distant regions, Gangwon Province and Jeju Island, and examined whether difference in ambient heavy metal concentrations could be detected through physiological variables, including chlorophyll damage, lipid oxidation, and protein content. The physiological variables of lichens in response to heavy metals differed according to the collection area: Arsenic exerted a significant impact on chlorophyll degradation and protein content. The degree of fatty acid oxidation in lichens was associated with increased Cu concentrations. Our research highlights the value of lichens as a bioindicator, as we found that even small variations in ambient heavy metal concentrations can be detected in natural lichens. Furthermore, our study sheds light on which physiology variables that can be used as indicators of specific heavy metals, underscoring the potential of lichens for future ecology studies.

Growth and Physiological Responses of Pinus strobus to CaCl2 (염화칼슘에 의한 스트로브잣나무의 생장 및 생리반응)

  • Je, Sun-Mi;Kim, Sun-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • The present study aimed to investigate the effect of calcium chloride($CaCl_2$) on the growth and physiological responses of Pinus strobus and the variables that are sensitive to $CaCl_2$. Thus, changes in the visible damage, growth of root collar diameter, plant water content, chlorophyll content and composition, maximum PS II photochemical efficiency, and electron transport rate of P. strobus was analyzed in relation to treatment witih $CaCl_2$. A $CaCl_2$ solution(0.5, 1.0 and 3.0%) was applied in the root zone before leaf unfolding. Leaf browning, defoliation, and drying were observed with $CaCl_2$ application and this pattern was aggravated as the $CaCl_2$ concentration increased and the treatment period became longer. The decrease of growth in root collar diameter and height and leaf water content were observed at $CaCl_2$ 1.0% and 3.0%. The total chlorophyll content indicated that photopigment, PS II photochemical efficiency and electron transport rate significantly decreased at $CaCl_2$ 3.0%. In conclusion, $CaCl_2$ affected leaf water content and led to a decrease of capability in light harvesting and photochemical responses. Also, as a result of the correlation between calcium chloride concentration and growth and physiological response parameters, it was found that the leaf moisture content and the ratio of chlorophyll a and b reflect the damage level of calcium chloride sensitively because their coefficient of determinations were relatively high.

Physiological Responses of Cultured Red Seabream Pagrus major and Olive Flounder Paralichthys olivaceus During Exposure to the Red Tide Dinoflagellate Cochlodinium polykrikoides (적조 Cochlodinium polykrikoides 노출에 따른 양식산 참돔과 넙치의 생리학적 반응 )

  • Hyo-Won, Kim;Hyun Woo, Gil;Young Jae, Choi;Yun Kyung, Shin
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • The present study investigated the survival rate, respiration rate, plasma stress index, and histological changes according to exposure time of cultured red seabream (Pagrus major) and olive flounder (Paralichthys olivaceus) exposed to Cochlodinium polykrikoides red tide. Fish cultured in natural seawater were used as the control group. Cochlodinium polykrikoides density was set to 5,500±200 cells·ml-1 in the experimental groups. All red seabreams died within 1 hour of exposure to red tide, whereas all olive flounders died within 5 hours of exposure. Analysis of physiological response revealed that in red seabream, plasma glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), catalase (CAT), and glutathione peroxidase (GPx) concentrations were increased; plasma glucose and superoxide dismutase (SOD) concentration were decreased. Meanwhile, in olive flounders, plasma cortisol, GOT, and GPT concentrations were increased; plasma glucose concentrations were increased during the first hour of exposure, followed by decrease after 5 hours; and plasma SOD, CAT, and GPx concentrations decreased during the first hour of exposure. Histological analysis revealed structural damage to the gills of both red seabream and olive flounder. In conclusion, the exposure of red seabream and olive flounder to Cochlodinium polykrikoides red tide at the density of 5,500 cells·ml-1 induces oxidative stress, which activates antioxidant defense mechanisms, ultimately leading to liver and gill damage.

Impact of UV-C Irradiation on Bacterial Disinfection in a Drinking Water Purification System

  • Hyun-Joong Kim;Hee-Won Yoon;Min-A Lee;Young-Hoon Kim;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.106-113
    • /
    • 2023
  • The supply of microbiological risk-free water is essential to keep food safety and public hygiene. And removal, inactivation, and destruction of microorganisms in drinking water are key for ensuring safety in the food industry. Ultraviolet-C (UV-C) irradiation is an attractive method for efficient disinfection of water without generating toxicity and adversely affecting human health. In this study, the disinfection efficiencies of UV-C irradiation on Shigella flexneri (Gram negative) and Listeria monocytogenes (Gram positive) at various concentrations in drinking water were evaluated using a water purifier. Their morphological and physiological characteristics after UV-C irradiation were observed using fluorescence microscopy and flow cytometry combined with live/dead staining. UV-C irradiation (254 nm wavelength, irradiation dose: 40 mJ/cm2) at a water flow velocity of 3.4 L/min showed disinfection ability on both bacteria up to 108 CFU/4 L. And flow cytometric analysis showed different physiological shift between S. flexneri and L. monocytogenes after UV-C irradiation, but no significant shift of morphology in both bacteria. In addition, each bacterium revealed different characteristics with time-course observation after UV-C irradiation: L. monocytogenes dramatically changed its physiological feature and seemed to reach maximum damage at 4 h and then recovered, whereas S. flexneri seemed to gradually die over time. This study revealed that UV-C irradiation of water purifiers is effective in disinfecting microbial contaminants in drinking water and provides basic information on bacterial features/responses after UV-C irradiation.

Effect of Housing Systems of Cage and Floor on the Production Performance and Stress Response in Layer (계사 사육 형태가 산란계의 생산성과 스트레스 반응에 미치는 영향)

  • Sohn, Sea-Hwan;Jang, In-Surk;Son, Bo-Ram
    • Korean Journal of Poultry Science
    • /
    • v.38 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • This study was conducted to investigate the effects of housing systems on the productivity and physiological response as stress indicators in White Leghorn chickens. The chickens subjected to the conventional cages had a significantly lower viability, hen-housed egg production, egg weight and body weight compared with those to the floor pens. However, the hens housed in the conventional cages had a shorter day of the first egg and a greater egg quality compared with those housed in the floor pens. In addition, this study was also investigated to identify biological markers for assessing the physiological response of chickens under stress conditions. As biological markers, the amount of telomeric DNA was analyzed by quantitative fluorescent in situ hybridization on the nuclei of cells. The DNA damage rate of lymphocytes was also quantified by the comet assay. The amount of telomeric DNA of the lymphocytes, kidney and spleen was significantly higher in the chickens under floor pens than those under conventional cages. The DNA damage also increased in chickens raised under conventional cages, as compared to the chickens under floor pens. As results, we conclude that the chickens housed in conventional cages have a greater stressful status than those housed in floor pens.