• 제목/요약/키워드: Physiological Sensor

검색결과 127건 처리시간 0.025초

AMP-activated protein kinase 활성화 기전과 관련 약물의 효과 (Effects of AMP-activated Protein Kinase Activating Compounds and Its Mechanism)

  • 최형철
    • Journal of Yeungnam Medical Science
    • /
    • 제29권2호
    • /
    • pp.77-82
    • /
    • 2012
  • AMP-activated protein kinase (AMPK) is an important cellular fuel sensor. Its activation requires phosphorylation at Thr-172, which resides in the activation loop of the ${\alpha}1$ and ${\alpha}2$ subunits. Several AMPK upstream kinases are capable of phosphorylating AMPK at Thr-172, including LKB1 and CaMKK${\beta}$ ($Ca^{2+}$/calmodulin-dependent protein kinase kinase${\beta}$). AMPK has been implicated in the regulation of physiological signals, such as in the inhibition of cholesterol fatty acid, and protein synthesis, and enhancement of glucose uptake and blood flow. AMPK activation also exhibits several salutary effects on the vascular function and improves vascular abnormalities. AMPK is modulated by numerous hormones and cytokines that regulate the energy balance in the whole body. These hormone and cytokines include leptin, adiponectin, ghrelin, and even thyroid hormones. Moreover, AMPK is activated by several drugs and xenobiotics. Some of these are in being clinically used to treat type 2 diabetes (e.g., metformin and thiazolidinediones), hypertension (e.g., nifedipine and losartan), and impaired blood flow (e.g., aspirin, statins, and cilostazol). I reviewed the precise mechanisms of the AMPK activation pathway and AMPK-modulating drugs.

  • PDF

Functional switching of eukaryotic 2-Cys peroxiredoxins from peroxidases to molecular chaperones in response to oxidative stress

  • Jang, Ho-Hee;Lee, Sang-Yeol
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.40-64
    • /
    • 2005
  • Much biochemical information on peroxiredoxins (Prxs) has been reported but a genuine physiological function for these proteins has not been established. We show here that two cytosolic yeast Prxs, cPrxI and II, exist in a variety of forms that differ in their structure and molecular weight (MW) and that they can act both as a peroxidase and as a molecular chaperone. The peroxidase function predominates in the lower MW proteins, whereas the chaperone function is more significant in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causesthe protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, $Cys^{47}$, which serves as an efficient $'H_2O_2-sensor'$ in the cells. The chaperone function of the proteins enhances yeast resistance to heat shock.

  • PDF

Spectroscopic and Electrochemical Detection of Thrombin/5'-SH or 3'-SH Aptamer Immobilized on (porous) Gold Substrates

  • Park, Buem-Jin;Sa, Young-Seung;Kim, Yong-Hwan;Kim, Young-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.100-104
    • /
    • 2012
  • Thrombin is a serine protease that catalyzes the conversion of soluble fibrinogen to insoluble fibrin, and thus induces physiological and pathological blood coagulation. Therefore, it is important to detect thrombin in blood serum for purposes of diagnosis. To achieve this goal, it has been suggested that a 15-mer aptamer strongly binds with thrombin to form a G-quartet structure of the aptamer. Generally, 5'-end thiol-functionalized aptamer has been used as an anti-thrombin binder. Herein, we evaluate the possibility of utilizing a 3'-SH aptasensor for thrombin detection using SPR spectroscopy, and compare the enhancement of the electrochemical signal of the thrombin-aptamer bound on a porous gold substrate. Although the two aptamers have similar configurations, in SPR analysis, the 3'-SH aptamer was a effective aptasensor as well as 5'-SH aptamer. Results from electrochemical analysis showed that the porous gold substrate acted as a good substrate for an aptasensor and demonstrated 5-fold enhancement of current change, as compared to gold thin film.

맥진 객관화를 위한 디지탈 맥진기의 진단 파라메터 연구 (A Study of Digital EPG Diagnosis Parameter for EPG Standardization)

  • 이준영;김정훈;서현우;이정환;이병채;이명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3243-3244
    • /
    • 2000
  • From ancient times, the diagnosis method of the oriental medicine has been performed by curing diseases by means of rectifying and adjusting the unbalance in the physiological function of the five viscera and the six bowels of a human body. Diseases have been diagnosed by the condition of blood circulation that cycles a human body through blood vessels by dint of the vitality of the heart. Based on such a systematic pulse diagnosis method, the article presents parameters that will be beneficial to clinical application on the basis of its analysis of the filtering for eliminating noises from pulse signals inputted from sensor group, the digital hardware dealing with signals necessary for recognition algorithm, and the structure of diagnosis algorithm and components of pulse waveform.

  • PDF

Simultaneous Diagnostic Assay of Catechol and Caffeine Using an in vivo Implanted Neuro Sensor

  • Ly, Suw-Young;Lee, Chang-Hyun;Jung, Young-Sam;Kwon, O-Min;Lee, Ji-Eun;Baek, Seung-Min;Kwak, Kyu-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권9호
    • /
    • pp.1742-1746
    • /
    • 2008
  • Catechol and caffeine were simultaneously analyzed with a bismuth-immobilized carbon nanotube paste electrode (BPE) using square wave (SW) stripping voltammetry. Optimum analytical conditions were determined. Simultaneous working ranges of 100-1,500 $mgL^{-1}$ for caffeine and 5-75 $mgL^{-1}$ for catechol were obtained. In the separated cell systems, a working range of 0.1-2.1 $mgL^{-1}$ catechol with a correlation coefficient of 0.9935, and a working range of 10-210 $mgL^{-1}$ caffeine with a correlation coefficient of 0.9921 were obtained. A detection limit (S/N) of 0.15 $mgL^{-1}$ (7.7 ${\times}$ $10^{-7}$ M) and a detection limit of 0.02 $mgL^{-1}$ (1.82 ${\times}$ $10^{-7}$ M), respectively, manifested for catechol and caffeine. It was found that three macro-type electrode systems could be implanted in fish and rat neuro cells. For both ions, the ion currents were observed. The physiological impulse conditions and the neuronal thinking current were also obtained.

피부 전기활동을 이용한 휴대형 각성도 측정 및 제어 시스템 (Portable arousal control system using electrodermal activities)

  • 고한우;이완규;김연호
    • 센서학회지
    • /
    • 제5권3호
    • /
    • pp.55-64
    • /
    • 1996
  • 생리지표로서 각성 수준을 잘 반영하는 피부전기활동 신호로부터 피부임피던스 수준과 피부임피던스 반사 신호를 분리 검출하고 실시간으로 각성도를 판단 및 제어하는 휴대형 시스템을 구현하였다. 이를 위하여 각성도 평가 지표를 세분화하여 의식 수준을 자동적으로 판단하고 경고신호를 이용하여 각성도를 제어하는 알고리즘을 연구하여 구현된 시스템의 제어효과를 평가하고 유효성을 입증하였다. 구현된 제어 시스템은 각성도 저하의 초기 단계부터 검출하고 판정 및 제어하므로서 각성도를 향상 시킬 수 있었으며, 앞으로 각성도 향상 및 제어를 위한 경보음 등의 효과 평가와 졸음운전 방지 시스템, 수면연구 등에도 활용될 수 있으리라 기대 된다.

  • PDF

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Ionic Passivation and Oxidation Dynamics for Enhanced Viability of Copper-Based On-Skin Bioelectrodes in Biological Environments

  • Jungho Lee;Gaeun Yun;Juhyeong Jeon;Phuong Thao Le;Seung Whan Kim;Geunbae Lim
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.352-356
    • /
    • 2023
  • The integration of bioelectronic devices with the skin is a promising strategy for personalized healthcare monitoring and diagnostics. On-skin bioelectrodes hold great potential for the real-time tracking of physiological parameters. However, persistent challenges of stability and reliability have instigated exploration beyond conventional noble metals. This study focuses on the ionic passivation and oxidation dynamics of copper-based on-skin thin-film bioelectrodes. Through parylene chemical vapor deposition, we harness a controlled thin film of parylene insulation to counter the intrinsic susceptibility of copper to oxidation in the ionic environment. The results represent the relationship among the parylene insulation thickness, copper oxidation, and electrode impedance over temporal intervals. Comparative analyses indicate that the short-term stability of the copper electrode is comparable to that of the gold electrode. Therefore, we propose a cost-effective strategy for fabricating copper-based on-skin bioelectrodes by introducing enhanced ionic stability within a discernible operational timeframe. This study enriches our understanding of on-skin bioelectronics and affordable material choices for practical use in wearable healthcare devices.

혈압 파형 재현을 위한 인공 대동맥 기반 모의 순환계 로봇 (Mock Circulatory Robot with Artificial Aorta for Reproduction of Blood Pressure Waveform)

  • 정재학;박용화
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.221-228
    • /
    • 2024
  • As the importance of cardiovascular health is highlighted, research on its correlation with blood pressure, the most important indicator, is being actively conducted. Therefore, extensive clinical data is essential, but the measurement of the central arterial blood pressure waveform must be performed invasively within the artery, so the quantity and quality are limited. This study suggested a mock circulatory robot and artificial aorta to reproduce the blood pressure waveform generated by the overlap of forward and reflected waves. The artificial aorta was fabricated with biomimetic silicone to mimic the physiological structure and vascular stiffness of the human. A pressurizing chamber was implemented to prevent distortion of the blood pressure waveform due to the strain-softening of biomimetic silicone. The reproduced central arterial blood pressure waveforms have similar magnitude, shape, and propagation characteristics to humans. In addition, changes in blood pressure waveform due to aging were also reproduced by replacing an artificial aorta with various stiffness. It can be expanded to construct a biosignal database and health sensor testing platform, a core technology for cardiovascular health-related research.

멀티모달 실감 경험 I/O 인터랙션 시스템 개발 (Development for Multi-modal Realistic Experience I/O Interaction System)

  • 박재언;황민철;이정년;허환;정용무
    • 감성과학
    • /
    • 제14권4호
    • /
    • pp.627-636
    • /
    • 2011
  • 본 연구는 단순 입력 기반 유니모달 인터랙션의 한계를 극복하고 단순 입력 방식이 아닌 멀티모달 기반 사용자의 행위, 의도, 및 집중도를 활용하여 실감적이고 몰입도를 향상시키는 인터랙션 시스템을 제안하는데 그 목적이 있다. 본 연구의 선행연구에서 기존 문헌연구를 토대로 메타분석방법을 활용하여 인터랙션을 위한 3차원 동작 인식 기술의 정확도를 분석하여 최종적인 센서 기반 인터랙션 방법이 선정되었고, 직관적 제스쳐 인터랙션 요소를 추출하여 본 시스템에 반영하였다. 또한 생리반응을 이용한 집중력 판단 기술을 개발하여 사용자 의도를 판단하는 연구를 진행하였다. 본 연구에서 제안하는 시스템은 3부분으로 나눌 수 있다. 선행연구에서 선정된 인터랙션 요소들을 적용하여 가속도(Accelator) 센서와 연성(Flexible) 센서를 활용하여 손 동작을 인식하는 시스템을 구현하였고, 동공 인터랙션을 통한 안경형 시선 추적기를 구현하여 인터랙션이 가능하게 하였으며, 심혈관 반응과 피부 온열 반응을 측정하여 사용자의 의도를 반영한 시스템을 최종 구현하였다. 실감형 디지털 엔터테인먼트 플랫폼 기술 개발을 위한 기초 연구로서 활용이 가능할 것으로 판단된다.

  • PDF