• Title/Summary/Keyword: Physical absorption

Search Result 962, Processing Time 0.032 seconds

Physical-based Dye-sensitized Solar Cell Equivalent Circuit Modeling and Performance Analysis (물리 기반의 염료 감응형 태양전지 등가회로 모델링 및 성능 분석)

  • Wonbok Lee;Junhyeok Song;Hwijun Choi;Bonyong Gu;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.67-72
    • /
    • 2023
  • In this paper, a dye-sensitized solar cell (DSSC), one of the representative third-generation solar cells with eco-friendly materials and processes compared to other solar cells, was modeled using MATLAB/Simulink. The simulation was conducted by designating values of series resistance, parallel resistance, light absorption coefficient, and thin film electrode thickness, which are directly related to the efficiency of dye-sensitized solar cells, as arbitrary experimental values. In order to analyze the performance of dye-sensitized solar cells, the optimal value among each parameter experimental value related to efficiency was found using formulas for fill factor (FF) and conversion efficiency.

  • PDF

Influence of Anticipation on Landing Patterns during Side-Cutting Maneuver in Female Collegiate Soccer Players

  • Park, Eun-Jung;Lee, Jung-Ho;Ryue, Jae-Jin;Sohn, Ji-Hoon;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.391-395
    • /
    • 2011
  • To investigate the anticipatory effect on landing patterns during side-cutting maneuver, thirteen healthy female elite college soccer players participated in this study. Three-dimensional knee kinematics, effective mass and correlation between both these were measured and analyzed using a motion analysis and force plates. Each testing session included anticipated tasks, $45^{\circ}$ side-cutting tasks (AC), followed by a set of unexpected side-cutting (UC) in a random order. Knee flexion/extension, valgus/varus and internal/external rotation angles and effect mass were compared by using paired t-test. Also, correlation analysis was performed to identify the relationship between knee angles and effective mass. Effective mass during UC was greater than that during AC. Effective mass and maximum knee flexion angle were positively correlated during AC and not during UC. Based on the relationship between effective mass and knee flexion angle in AC, shock absorption can be controlled by knee joint flexion in pre-predicted movement condition. However, effective mass can not be controlled by knee flexion in UC condition. The unexpected load affects were more irregular on the knee joint, which may be one of the injury mechanisms of anterior cruciate ligament (ACL) in female soccer players.

Effect of L-Menthol on the Percutaneous Absorption of Ketorolac Tromethamine Across Human Cadaver Skin (사람 카다베르 피부를 통한 케토롤락 트로메타민의 경피 흡수에 L-menthol이 미치는 영향)

  • Lee, Yong-Seok;Oh, Heung-Seol;Kim, Ha-Hyung;Lee, Kwang-Pyo
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.595-600
    • /
    • 2000
  • Transdermal delivery of ketorolac tromethamine, a potent non-narcotic analgesic, through human cadaver skin was investigated in vitro. A mixture of ethanol/water (40/60) containing 0, 1, 3, 5, and 8 (w/v)% L-menthol were used as a vehicle and penetration enhancer respectively. The permeation of ketorolac through human cadaver skin from saturated drug solution was evaluated at $37^{\circ}C$ with modified Franz diffusion cell. The in vitro skin flux and lag time were $1.23\;{\pm}\;0.11\;{\mu}g/cm^2{\cdot}hr$ and $5.56\;{\pm}\;0.34\;hr$, respectively. The cumulative amount of penetrated ketorolac containing L-menthol in ethanol/water (40/60) binary system was increased by the following order; 3%, 5%, 8%, 1%, 0%, and the lag time was decresed by the following order; 3%, 5%, 8%, 0%, 1%. The results suggested that a potential use of 3% L-methol is an effective penetration enhancer of ketorolac tromethamine through the human cadaver skin.

  • PDF

Mid-infrared Continuous-wave Optical Parametric Oscillator with a Fan-out Grating MgO:PPLN Operating Up to 5.3 ㎛

  • Bae, In-Ho;Yoo, Jae-Keun;Lim, Sun Do;Kim, Seung Kwan;Lee, Dong-Hoon
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.577-582
    • /
    • 2019
  • We report on a continuous-wave (cw) optical parametric oscillator (OPO) optimized for mid-infrared emission above 5.0 ㎛. The OPO is based on a magnesium-oxide-doped periodically poled LiNbO3(MgO:PPLN) crystal with a fan-out grating design. A linear two-mirror cavity resonating both at the pump and signal wavelengths is stabilized to the pump laser by using the modified Pound-Drever-Hall (PDH) method. The idler wavelength is continuously tunable from 4.7 ㎛ up to 5.3 ㎛ by varying the poling period of the fan-out grating crystal. Pumped by a diode-pumped solid state (DPSS) laser with a power of 1.1 W at 1064 nm, the maximum idler output power is measured to be 5.3 mW at 4.8 ㎛. The output power above 5.0 ㎛ is reduced to the hundreds of ㎼ level due to increased absorption in the crystal, but is stable and strong enough to be measured with a conventional detector.

Studies on Physical Properties of Wood-based Composite Panel with Recycled Tire Chip - Change of Properties on Composite Panel by Mixing Ratio of Combined Materials - (폐타이어를 이용한 목질고무 복합패널의 물성에 관한 연구 - 원료혼합비율에 따른 복합패널의 재질변화 -)

  • Lee, Weon-Hee;Byeon, Hee-Seop;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • In this paper, the relationships between volumetric mixing ratio of rubber chip and physical and mechanical properties of wood/rubber composite panel was examined in order to investigate the mixture characteristics of wood and rubber chip. Because of the specific gravity of rubber differed from wood chip, physical properties of wood/rubber composite panel was shown very different values by mixing rate of chip element. Specific gravity in air-dry of composite panel was increased rapidly as volumetric percent of rubber chip was increased. Moisture content of composite panel was decreased as volumetric percent of rubber chip element was increased. This results was considered that wood weight is light and porosity material for moisture absorption. Compressive strength and modulus of rupture in bending test were decreased as volumetric percent of rubber chip increased. By mixing ratio control of chip elements, various wood/rubber composite panel can be applicable to every interior materials such as subfloor, playground, and exterior materials such as road blocks for recreational facilities in garden and forest and city parks.

  • PDF

A Study on the Physical Properties of Interlocking Block with the Contents of the Recycled Aggregate (순환골재 혼합비율에 따른 인터로킹 블록의 물리적 특성에 관한 연구)

  • Jeon, Chan-Soo;Song, Tae-Hyeob;Yoon, Sang-Hyuck
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.71-78
    • /
    • 2012
  • Recycled aggregates are made from construction wastes, and they have many national and social benefits by saving energy, developing substitute resources, and protecting environment. However, low-quality recycled aggregate with low density and high absorption rate cannot be used for structural concrete aggregate but is used mainly for low added value. Therefore, this study aims to identify the characteristics of the materials of recycled aggregates made after crashing and pulverizing waste concrete. For this, their major physical characteristics of cement content, absolute dry density, absorption rate, etc. were reviewed to make a mix design (draft) for the production of the secondary product and performance evaluation was done on the bending strength, absorption rate, bending strength after freezing and thawing, compressive strength, air-dried gravity, etc. of the test products produced by applying the mix design to compare the results with the quality standards of GR mark. The results of the tests showed that the substitution rate of recycled aggregate increased to 50~90 %, which is of superior quality than the performance standards of GR F 4007. Therefore, it is thought that they can be used for various construction works with certain physical characteristics applicable to the production of secondary concrete products using recycled aggregates.

  • PDF

Evaluation of Physical Properties and Biocompatibility of HA-Dex Fusion Hydrogel Patch for Atopic Healing Ability (HA-Dex 융복합 하이드로겔 패치의 아토피 치유 능력에 대한 물리적 특성 및 생체 적합성 평가)

  • Hong, Gyeong Sik;Choi, Jeong Yeon;Choi, Jin Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • Recently, since atopic dermatitis is sensitive to skin irritation, it has been suggested that the development of a patch that can effectively exhibit adhesion and absorption to a specific local area while minimizing skin irritation, and capable of appropriate drug release should be given priority. In this study, we tried to develop a hydrogel patch that minimizes skin irritation, adheres effectively to a specific area, and promotes absorption. The atopic patch was formulated into a super-absorbent hydrogel sheet using a freeze drying method. Cell viability assay was carried out using keratinocytes (HaCaT cell) and fibroblasts (L929 cells). In order to investigate the physical properties, FT-IR, FE-SEM, porosity analysis and swelling behavior were investigated. As a result, the newly prepared HA-Dex hydrogel patch was verified by biocompatibility and physical evaluation. In addition, the manufactured hydrogel patch has sufficient moisture absorption capacity and can relieve itching of atopic skin, and is expected to be applied to various drug delivery products for the treatment of atopic dermatitis in the future.

Variations of Engineering Geological Characteristics of the Cretaceous Shale from the Pungam Sedimentary Basin in Kangwon-do due to Freezing-Thawing (강원도 횡성군 풍암분지 백악기 셰일의 동결-융해에 따른 지질공학적 특성 변화)

  • Jang Hyun-Shic;Jang Bo-An;Lee Jun-Sung
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.401-416
    • /
    • 2004
  • We have collected shale specimens from the Pungam Basin in Kangwon province and investigated change of physical properties by freezing and thawing in water as well as in acidic fluid. The temperature range was $-20{\pm}2^{\circ}C\~15{\pm}2^{\circ}C$. Specimens were frozen for 12 hours and thawed in water for 8 hours. Then, they were saturated in the vacuum chamber for 4 hours to make specimens fully saturated. This procedure was 1 cycle. We have measured absorption, ultrasonic velocity, shore hardness, slake durability and uniaxial compressive strength at every 5th cycles. The physical properties increased or decreased as freezing and thawing cycles increased. Uniaxial compressive strength decreased by 0.40MPa per cycle in water and by 0.48MPa in acidic fluid. Elastic constant also decreased by 0.21GPa per cycle in water and by 0.30GPa in acidic fluid. Absorption increased by $0.29\%$ and $0.37\%$ per cycle in water and acidic fluid, respectively. These results indicate that decrease in uniaxial compressive strength, elastic constant and absorption by freezing and thawing in acidic fluid is more rapid than in water. Ultrasonic velocities, shore hardness and slake durability show no differences in water and acidic fluid. When we compared our results with the temperatures in the Hongchon during the winter season, $6\~12$ cycles may be equivalent to 1 year.

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF

A Study on Preventive Methods Against Concrete Corrosion by Sea Water of the of West Sea (서해조수에 의한 콘크리트의 부식 방지법에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2622-2633
    • /
    • 1972
  • This study was attempted in order to search for phyosical properties on various mix designs of concrete as ne of studies relating top revention against corrosion by action of sea water in the West Sea. In this study, as concerete mix design, fly ash, pozzolith and vinsolresin were used as admixtures for normal portland cement respectively, and pozzolan cement and normal cement were also used for each plain concrete. Concrete specimens were made and cured in accordance with the Korean Standard Specifications for concrete. In thetest, compressive strengths of the specimens were measured at the following ages; 7-day, 28-days and 3-months. Absorption test was made by immersing the specimens in water kept at boiling temperature for 5 hours. The results obtained from the tests are summarized as follows; 1. The use of fly ash as an admixture in mix design of concrete, has an effect on compressive strength at each age. But it is actually not effective on absorption by concrete, as the result of the fly ash concrete is almost the same at that of ordinary plain concrete. 2. The use of pozzolith as an admixture in mix design of concrete, has an effect on both of compressive strength at each age and absorption rate. The pozzolith is more effective than vinsol resin, relating to improvement for physical proreties of concrete. 3. The use of vinsol resin as an admixture in mix design of concrete, has also an effect on both of compressive strength at each age and absorption rate. As the above fact, effectiveness of the vinsol resin is some what lower than pozzolith, as far as physical properties of the concrete are concerned. 4. Plain concrete used pozzolan cement only is the most effective on both of strength at each age and absorption rate in this study. The pozzolan cement is characteristic of higher strenth as the age is later. 5. Relationship between compreessive strengths and absorption rates of the concrete is shown by a different regression line dependingon ages. The gradient of the regression line is steeper as the age is later. 6. Throught physical test, it may be expected that the use of pozzolith and vinsol resinas asan admixture respectively will be better resistant than fly ash or ordinary plain concrete and that plain pozzolan concrete will also be the best resistant to action of sea water due to improvement of theirphysical properties.

  • PDF