• 제목/요약/키워드: Physical Compatibility

검색결과 149건 처리시간 0.021초

광 EtherCAT을 이용한 네트워크 기반 모터 제어기 개발 (The Development of Motor Controller based on Network using Optic-EtherCAT)

  • 문용선;이광석;서동진;배영철
    • 제어로봇시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.467-472
    • /
    • 2008
  • In this paper, we design, implement and apply network physical layer to 100 BaseFx optical cable interface module based on industrial ethernet protocol which is physical layer of EtherCAT that has ensure its open standard ethernet compatibility which having been provided with real time of control in network of intelligent service robot, can be process numerous data to sensor and motor control system. Through BLDC motor control performance tests, we try to propose suitability as internal network of intelligent service robot and automation system.

TiAlN 코팅공구를 사용한 Ti-6Al-4V 티타늄합급의 절삭특성에 관한 연구 (A Study on the Cutting Characteristics in the Machining of Ti-6Al-4V Alloy using TiAlN Coated Tool)

  • 이승철;박종남;조규재
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.451-456
    • /
    • 2004
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF

폴리프로필렌 수지 복합을 위한 텐셀 재생섬유의 소수화 표면개질 특성 연구 (A Study on the Hydrophobicity Modification and Physical Properties of Tencel Regenerated Fibers for Polypropylene Resin Composites)

  • 윤성현;김미경;이은수
    • 한국염색가공학회지
    • /
    • 제33권4호
    • /
    • pp.258-268
    • /
    • 2021
  • This study conducted on the introduction of recycled cellulose fibers, which are widely used in the textile industry as eco-friendly biomass materials, into polypropylene resins, which are mainly used for interior and exterior materials such as door trims and console parts of automobiles. In general, cellulose fibers can affect mechanical properties and have a lightening effect when used as a reinforcing agent. However, since cellulose fibers have hydrophilic properties and have relatively low compatibility with industrial polymer resins, they are used in combination through fiber hydrophobic surface treatment. Therefore, through this study, the reforming reaction conditions optimized in terms of hydrophobicity and workability for cellulose fibers are studied. Furthermore, polypropylene containing surface-modified cellulose fibers was prepared to compare physical properties by fiber content and study optimized content.

실크/PLGA 하이브리드 지지체의 기계적 물성과 세포친화력; in vitro 연구 (Mechanical Property and Cell Compatibility of Silk/PLGA Hybrid Scaffold; In Vitro Study)

  • 송이슬;유한나;엄신;김온유;유석철;김형은;이동원;강길선
    • 폴리머
    • /
    • 제35권3호
    • /
    • pp.189-195
    • /
    • 2011
  • 조직 형성을 위한 생리학적 환경을 제공하는 새로운 생활성 지지체의 디자인은 생체재료 연구에서 중요한 분야이다. 본 연구에서는 3차원적 실크/PLGA 지지체의 물성평가를 위해 압축강도, 수분친화도, SEM 분석을 하였으며, 세포친화성 평가를 위해 RAW 264.7과 NIH/3T3의 부착, 증식 및 표현형유지와 염증반응에 미치는 영향을 조사하였다. 지지체는 용매 캐스팅/염 추출법으로 제조하였고, 압축강도, 수분친화도 면에서 실크 함량이 20 wt%에서 우수함 확인했으며, 표면의 거침도활 높여 세포부착에 긍정적인 구조임을 확인하였다. 세포친화성 분석 결과 실크함량이 20 wt%인 실크/PLGA 지지체에서 높은 초기부작도 및 증식률을 보였으며, 실크함량이 20 wt%에서 염증반응이 눈에 띄게 감소함을 확인하였다. 조직공학적 응용에 실크/PLGA 지지체가 유용할 것이라 판단하였다.

중등 정보교육의 피지컬 컴퓨팅 교육을 위한 보드 개발 (Development of a Board for Physical Computing Education in Secondary Schools Informatics Education)

  • 엄기순;장윤재;김자미;이원규
    • 컴퓨터교육학회논문지
    • /
    • 제19권2호
    • /
    • pp.41-50
    • /
    • 2016
  • 2015년 9월 개정 교육과정이 발표되면서 중학교 정보교과는 필수로 지정되고, 피지컬 컴퓨팅 단원이 포함되었다. 선도학교를 중심으로 피지컬 컴퓨팅의 대표적인 도구인 아두이노를 활용한 교육 연구가 진행되고 있지만, 개정 교육과정에서 활용하기 위해서는 해결해야 할 문제점들이 있다. 본 연구에서는 중등 학습자가 피지컬 컴퓨팅을 배울 때 하드웨어의 인지적 부담을 줄이고, 창작의 과정을 경험할 수 있도록 피지컬 컴퓨팅 교육용 보드를 개발하였다. 개발된 보드의 특징은 첫째, 아두이노 보드와 호환성 유지, 둘째, 창작을 위한 가장 핵심적인 기능 제공, 셋째, 소형화 이다. 기존 하드웨어 보드에 비해 기능은 줄었지만 중등 학습자가 창작하기에 용이하도록 구성하였다. 본 연구를 바탕으로 다양한 교육 대상자를 위한 보드 개발과 수업 적용을 위한 연구가 지속되어야 한다.

Establishing a stability switch criterion for effective implementation of real-time hybrid simulation

  • Maghareh, Amin;Dyke, Shirley J.;Prakash, Arun;Rhoads, Jeffrey F.
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1221-1245
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) is a promising cyber-physical technique used in the experimental evaluation of civil infrastructure systems subject to dynamic loading. In RTHS, the response of a structural system is simulated by partitioning it into physical and numerical substructures, and coupling at the interface is achieved by enforcing equilibrium and compatibility in real-time. The choice of partitioning parameters will influence the overall success of the experiment. In addition, due to the dynamics of the transfer system, communication and computation delays, the feedback force signals are dependent on the system state subject to delay. Thus, the transfer system dynamics must be accommodated by appropriate actuator controllers. In light of this, guidelines should be established to facilitate successful RTHS and clearly specify: (i) the minimum requirements of the transfer system control, (ii) the minimum required sampling frequency, and (iii) the most effective ways to stabilize an unstable simulation due to the limitations of the available transfer system. The objective of this paper is to establish a stability switch criterion due to systematic experimental errors. The RTHS stability switch criterion will provide a basis for the partitioning and design of successful RTHS.

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제7권2호
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

Effective Properties of Multi-layered Multi-functional Composites

  • Kim, Byeong-Chan;Baltazar, Arturo;Kim, Jin-Yeon
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.153-166
    • /
    • 2009
  • A matrix method for evaluating effective electro-magneto-thermo-elastic properties of a generally anisotropic multilayered composite is presented. Physical variables are categorized into two groups: one that satisfies the continuity across the interface between layers and another that satisfies an average inter-layer compatibility (which is also exact). The coupled electro-magneto-thermo-elastic constitutive equation is accordingly reassembled into submatrices, which leads to the derivation of concise and exact matrix expressions for effective properties of a multilayered composite having the coupled physical effects. Comparing the results for a purely elastic multiplayer with those from other theoretical approaches validates the developed method. Examples are given for a PZT-graphite/epoxy composite and a $BaTiO_3-CoFe_2O_4$ multiplayer which exhibit piezo-thermoelastic and magnetoelectric properties, respectively. The result shows how a strong magnetoelectric effect can be achieved by combining piezoelectric and piezomagnetic materials in a multilayered structure. The magnetoelectric coefficient of the $BaTiO_3-CoFe_2O_4$ multiplayer is compared with those for fibrous and particulate composites fabricated with the same constituents.

알지네이트 기반 분사형 하이드로겔 개발 및 용기 적용에 대한 기술적합성 평가 (Development of Alginate-based Spray-type Hydrogel and Evaluation of Technical Compatibility for Container Application)

  • 주용준;전희경;최정연;홍경식
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.64-72
    • /
    • 2023
  • Initial burn wound care is one of the important factors in the outcome of burn treatment. In this study, we tried to develop spray-type alginate hydrogel dressing with advantages such as promoting wound healing, reducing pain, and increasing ease of use for emergency burn treatment. Spray implementation, physical properties, and cytotoxicity of the newly developed spray-type alginate hydrogel dressing were evaluated. As a result, a new functional spray-type hydrogel dressing with excellent physical properties and biocompatibility was developed along with the development of spray able containers, and it was confirmed that it could be applied as a treatment for skin regeneration in the future.

다양한 연료온도 조건에 있어서의 기존 가솔린과 F-T합성 가솔린의 분사율 특성 비교 연구 (A Comparative Study on the Injection Rate Characteristics of Conventional and F-T Synthetic Gasoline Under Various Fuel Temperatures)

  • 손지현;배규한;문석수
    • 한국분무공학회지
    • /
    • 제28권3호
    • /
    • pp.143-149
    • /
    • 2023
  • Amidst the drive towards carbon neutrality, interest in renewable synthetic e-fuels is rising rapidly. These fuels, generated through the synthesis of atmospheric carbon and green hydrogen, offer a sustainable solution, showing advantages like high energy density and compatibility with existing infrastructure. The physical properties of e-fuels can be different from those of conventional gasoline based on manufacturing methods, which requires investigations into how the physical properties of e-fuels affect the fuel injection characteristics. This study performs a comparative analysis between conventional and Fischer-Tropsch (F-T) synthetic gasoline (e-gasoline) across various fuel temperatures, including the cold start condition. The fuel properties of F-T synthetic and conventional gasoline are analyzed using a gas chromatography-mass spectrometry technique and the injection rates are measured using a Bosch-tube injection rate meter. The F-T synthetic gasoline exhibited higher density and kinematic viscosity, but lower vapor pressure compared to the conventional gasoline. Both fuels showed an increase in injection rate as the fuel temperature decreased. The F-T synthetic gasoline showed higher injection rates compared to conventional gasoline regardless of the fuel temperature.