• 제목/요약/키워드: Photovoltaic simulator

검색결과 108건 처리시간 0.019초

구성 재료와 방사조도 특성에 따른 태양전지모듈의 최대출력 분석 (Analysis of Maximum Power Generation of Photovoltaic Module Depending on Constituent Materials and Incident Light Characteristics)

  • 강기환;김경수;박지홍;유권종;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we analyze the maximum power generation of photovoltaic(PV) module depending on constituent materials and incidence angle dependence of light. To verify characteristics of constituent materials, we made photovoltaic modules with 4 kinds of solar cells and textured glass according to fabrication method. To find the degree of the maximum power generation dependence on intensity of light, Solar Simulator is applied by changing angle of module and light intensity. Through this experiment, to obtain maximum power generation from limited PV modules, it is needed to fully understand constituent materials, fabrication method and dependence of incident light characteristics.

Operation Analysis of a Communication-Based DC Micro-Grid Using a Hardware Simulator

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.313-321
    • /
    • 2013
  • This paper describes the operation analysis results of a communication-based DC micro-grid using a hardware simulator developed in the lab. The developed hardware simulator is composed of distributed generation devices such as wind power, photovoltaic power and fuel cells, and energy storage devices such as super-capacitors and batteries. Whole system monitoring and control was implemented using a personal computer. The power management scheme was implemented in a main controller based on a TMS320F28335 chip. The main controller is connected with the local controller in each of the distributed generator and energy storage devices through the communication link based on a CAN or an IEC61850. The operation analysis results using the developed hardware simulator confirm the ability of the DC micro-grid to supply the electric power to end users.

실시간 시뮬레이터를 이용한 태양광 발전 시스템의 출력 변동에 따른 THD 분석 (Analysis of THD according to Output Power Fluctuation of Photovoltaic Generation System using Real Time Simulator)

  • 안희진;서훈철;김철환
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.361-366
    • /
    • 2012
  • This paper analyzes the THD(Total Harmonics Distortion) according to output power fluctuation of photovoltaic(PV) systems using real time simulator. For being close to reality, the PV system including inverter and MPPT(Maximum Power Point Tracking) which composed of closed-loop using real-time simulator are modeled. The change of irradiance and temperature of PV module is modeled to consider the change of weather. The various simulations according to the weather conditions are performed and THD is calculated at each condition. In this paper, the results by off-line simulation are compared with the ones of real time simulation.

다결정 실리콘 태양광 모듈의 옥외 성능 평가 (Outdoor Performance Evaluation of Multi-Crystalline Silicon Photovoltaic Module)

  • 이유리;김우경;정재학
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.71-75
    • /
    • 2019
  • Solar energy is one of the renewable energy sources. It can respond to expanding energy demand. A solar cell module is designed to have a durability that can be developed over a long period of 25 years to be installed outdoors and perform like a stable power supply. We need Standard Test Condition (STC)-based power output data before and after testing to measure the power output of existing modules. The modules are shown to reduce power output by comparing data before and after outdoor experiments regardless of whether they are indoor or outdoor. It is easy to compare the power output quantities through the module simulator in the indoor. However, it takes a lot of testing time and costs to compare the power output on outdoor in the case of a high number of modules and distance from the module simulator. It can save time and costs if we can check the power output using the data in outdoor. We have used the long-term outdoor test to find the elements out that corresponds to the reductions in power output quantities. We have conducted research that matched the actual and the tests.

옥외 설치된 비정질 실리콘 박막태양전지모듈의 전기적 출력 특성 분석 (Analysis of Electrical Characteristics of Amorphous Silicon Thin Film Photovoltaic Module Exposed Outdoor)

  • 김경수;강기환;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.62-67
    • /
    • 2008
  • In this study, we analyze the electrical characteristics of amorphous silicon thin film photovoltaic module which are installed about 5 years ago. Four modules from PV system are extracted and measured the maximum power change ratio using solar simulator(Class A). Also, infrared camera is used to get thermal distribution characteristics of system. The external appearance change is compared with initial module by naked eye examination. Through this experiment, 31% maximum output power drop is observed. The detail description is specified as the following paper.

Buck Converter를 이용한 태양광 시뮬레이터 개발 (Embodiment of Photovoltaic Simulator based on Buck Converter)

  • 송두영;곽상현;박성준;이민중
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.189-192
    • /
    • 2008
  • 본 논문에서는 태양광 발전시스템의 인버터 개발에 필요한 태양광 시뮬레이터를 개발하고자 한다. 태양광 시뮬레이터를 one-diode 등가회로를 기반으로 기존의 제품을 수치적으로 모델링하고, P-V특성곡선을 이용하여 인버터가 MPPT를 수행 할 최대값 및 최소값을 찾아서 파라메터를 설계하였다. 그리고 설계된 파라메터를 PSIM으로 검증하였으며, Matlab을 이용하여 주파수 분석을 수행하였다.

  • PDF

태양광/연료전지용 배터리 충·방전 하이브리드 시스템 설계 (Design of Hybrid System for Battery Charge·Discharge using Photovoltaic/Fuel cell)

  • 박봉희;조영민;최주엽;조상윤;최익;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.123-129
    • /
    • 2014
  • Photovoltaic and fuel cell systems can be used as power source in mobile robots. At this time the photovoltaic system generally generate power in daytime. The starting time of fuel cell is slower than the lithium battery. To compensate for these disadvantages, a battery charge-discharge system is used. Especially the bi-directional converter is used mainly in the charge-discharge method. The controller in a buck converter controls the input voltage of the converter to meet the maximum power point tracking(MPPT) performance. First of all, the simulations of hybrid system for battery charge-discharge system in each step simulated using solar and fuel cell modeling as input source in PSIM. Experiment of the buck and bi-directional converter system is conducted through using photovoltaic/fuel cel simulator(pCube) instead of solar and fuel cell. This hybrid system for battery charge discharge using photovoltaic/fuel cell generates emergency power for the communication system in mobile robot.

태양광 패널 최소 임계출력 음영비 결정 (Determination of Shading Ratio Outputting Minimum Critical Power of Photovoltaic Panel)

  • 정종욱;정진수;김선구
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.130-135
    • /
    • 2010
  • In this paper, the shading ratio about to output the minimum critical power of a photovoltaic panel was determined by experiment and simulation. A 2.475[kW] poly-crystalline photovoltaic panel consisting of 11 modules was used in the experiment and its surface was covered with shading curtains, thus the amount of light incident to the modules were controlled. In order to compare with the experimental results, the experimental circuits were modelled with the CASPOC (power electronics electrical drives simulator) and module parameters were applied to it, by which the minimum critical power was calculated. As a result, the photovoltaic panel was about to generate the power when the 5th shading curtains were removed from the module surface, after then the output power linearly increased by removing the shading curtains. In addition, the CASPOC simulation results were similar to the experimental results in the abrupt decreasing pattern of power.

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

50kw급 PV시스템 시뮬레이터의 구현 및 경제성 분석에 관한 연구 (Implementation of the 50kW Utility Interconnected PV System Simulator and the Study of Financial Analysis)

  • 이강연;김용구;신석두;김형곤;전형석;김병철;민완기;김남오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 정기총회 및 학술대회 전문대학교육위원
    • /
    • pp.157-159
    • /
    • 2008
  • This paper summarizes the results of these efforts by offering a photovoltaic system structure in 50kW. The combination of photovoltaic system components are interconnected and system monitoring system will be summarized for the purpose of the increasing safety in this article. This paper describes configuration of utility interactive photovoltaic system which generated electric power supplies to dormitory. In order to installing the middle or large scale photovoltaic system, It must investigated the optimal design of system, compute quantity of power generation, economic rate of return and so on. In this paper represent 50kW utility photovoltaic system examination, developed simulation results and financial analysis. The performance of photovoltaic system has been evaluated, analyzed with simulation and financial analysis results. The results obtained in this research will be much useful to prior investigation for installing utility interactive photovoltaic system.

  • PDF