• Title/Summary/Keyword: Photovoltaic/Thermal system

Search Result 125, Processing Time 0.022 seconds

Evaluation of seasonal performance for single-stage desalination system with solar energy (1단 증발식 해수담수화 시스템의 계절별 성능 평가)

  • Kwak, Hee-Youl;Joo, Hong-Jin;Joo, Moon-Chang;Kim, Jung-Bae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.221-226
    • /
    • 2008
  • This study was carry out evaluation of seasonal performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a spring season day average $392W/m^2$, the daily fresh water showed to produce about 340liter. In a summer season day average $296W/m^2$, the daily fresh water showed to produce about 328liter. In a autumn season day average $349W/m^2$, the daily fresh water showed to produce about 277liter. In a winter season day average $342W/m^2$, the daily fresh water showed to produce about 271liter.

  • PDF

Performance test of PVT-water system considering ambient air and circulating water temperature (외기 및 순환수 온도조건을 고려한 PVT-water 시스템의 성능실험)

  • Jeong, Yong-Dae;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.83-88
    • /
    • 2015
  • Purpose: Photovoltaic system is a technique for producing electrical power by utilizing solar energy, which can be used over 20 years with simple maintenance. However, in the case of photovoltaic systems, the energy conversion efficiency decreases as the surface temperature of module increases, compared with other renewable energy technologies. In this regard, PVT module can increase the energy utilization of a composite module as producing heat and electricity simultaneously by using solar energy. Currently, many researches have been promoting in order to develop a high efficiency PVT module in Korea. However, there are a few studies about the performance of the modules corresponding the shape of types and various heat exchangers of the PVT module. In this study, the electrical performance was measured by the change of the ambient temperature and the circulating water temperature using the fabricated PVT module. Method: Experiments were performed using a solar simulator. And this experiment was assumed that the weather condition was in each season, as winter, spring, autumn and summer. It was identified that the I-V curve associated with the change of the experimental conditions and confirmed the change in the electrical characteristics. Result: As a result, it was figured out that the surface temperature and the electrical performance changes in case conditions. The electrical performance was calculated in different temperature condition and the power production was confirmed by the change of module temperature.

Operating performance of desalination system with solar energy (태양에너지 해수담수화 시스템 운전 성능)

  • Kwak, Hee-Youl;Yoon, Eung-Sang;Joo, Moon-Chang;Joo, Hong-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.250-255
    • /
    • 2009
  • This study was analyzed the long term performance of the demonstration system for solar energy desalination in Jeju. we used a solar thermal system as heat source of the single-stage fresh water generator with plate-type heat exchangers and a photovoltaic power system as electric source for hydraulic pumps. The demonstration system was designed and installed at Jeju-island in 2006. The system was comprised of the desalination unit with daily fresh water capacity designed as $2m^3$ a $120m^2$ evacuated tubular solar collector to supply the heat, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation to supply the electricity of hydraulic pumps for the heat medium fluids. Through the operation during about 3 years, In a clear day more than $400W/m^2$, the daily fresh water showed to produce more than about 500liter, and from January, 2007 to March, 2009 for 3 years, solar irradiance daily averaged was measured $370W/m^2$, the daily fresh water yield showed that can be produced about 330liter.

  • PDF

Evaluation of long-term performance for single-stage desalination system with solar energy (태양에너지 해수담수화 실증시스템 장기 운전 열성능)

  • Kwak, Hee-Youl;Yoon, Eung-Sang;Joo, Moon-Chang;Joo, Hong-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.172-177
    • /
    • 2008
  • This study was carry out evaluation of long-term performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a clear day more than 400W/$m^2$, the daily fresh water showed to produce more than about 500liter, and from January, 2007 to October, 2008 for 2 years, solar irradiance daily averaged was measured 370W/$m^2$, the daily fresh water yield showed that can be produced about 330liter.

  • PDF

An Experimental Study of a Water Type PV/Thermal Combined Collector Unit (액체식 PV/Thermal 복합모듈의 성능실험연구)

  • Lee, Hyun-Ju;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.105-111
    • /
    • 2007
  • Hybrid PV/Thermal systems consisting of photovoltaic module and thermal collector can produce the electricity and thermal energy. The solar radiation increases the temperature of PV modules, resulting in the decrease of their electrical efficiency. Accordingly hot air can be extracted from the space between the PV panel and roof, so the efficiency of the PV module increases. The extracted thermal energy can be used in several ways, increasing the total energy output of the system. This study describes a basic type of PV/T collector using water. In order to analyze the performance of the collector, the experiment was conducted. The result showed that the thermal efficiency was 17% average and the electrical efficiency of the PV module was about $10.2%{\sim}11.5%$, both depending on solar radiation, inlet water temperature and ambient temperature.

A study on the efficiency of sloped type Double-skin System for the Curtailment of Heating/Cooling Load (냉난방부하 절감을 위한 경사형 이중외피시스템의 성능연구)

  • An, Hyung-Jun;Kim, Young-Tag;Choi, Chang-Ho;Lee, Hyn-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.77-87
    • /
    • 2004
  • BIPV or double skin applied to the surface of the building, power and thermal load cannot both be increased. In the case of BIPV, because it is applied to the facade, incident solar energy decreases and efficiency drops off. The system in this paper complements these disadvantages and aims to decrease the heating & cooling load by transforming solar energy to electronic and thermal energy. The research in this paper is about the applicability of the clear PV attached double-skin system. And the PV electronic generation and the factors that affect the heating & cooling load such as the daily radiation, sun shading ratio, heating & cooling load, daylight luminance and glare distributions in the building are simulated.

A Study on the Application of Fixed-concentrated PV Module Hybrid Panel for BIPV (고정식 집속형 PV모듈 복합패널의 BIPV적용성 검토)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.77-83
    • /
    • 2005
  • The verified thermal efficiency, thermal capacity confirmed the effects of the cooling system. Therefore, it is useful for preventing the PV cell temperature rising when solar radiation accumulates in summer. When adopting a hybrid panel for the BIPV system, the affected areas include the vertical outside walls facing the south, southeast, and southwest on the curtain walls excluding windows. The standards on replace aluminum panel which were the popular exterior material were investigated, Designing practice made sure that it could be manufactured in various sizes, and confirmed the most proper method to install a hybrid panel in the BIPV system.

A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

Development of a Cooling System for a Concentrating Photovoltaic Module (고집광 태양전지 모듈의 냉각시스템 개발)

  • Kim, Tae-Hoon;Do, Kyu-Hyung;Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.551-560
    • /
    • 2011
  • In this paper, a cooling system that includes a heat spreader and a natural convective heat sink is proposed for the cooling of a concentrating photovoltaic (CPV) module. The heat spreader and the natural convective heat sink are designed on the basis of previous analytical investigations. In order to evaluate the proposed cooling system, we conducted experimental investigations varying the heat rate and the inclined angle of the cooling system. From the experimental results, it is found that the proposed cooling system satisfies the design constraints for good operation of the CPV module. Finally, a correlation is suggested for estimating the effects of the heat rate and the inclined angle on the thermal performance of the natural convective heat sink is suggested.

Evaluation of Heat Transfer Characteristics of PV Module with Different Backsheet (백시트 종류에 따른 태양전지 모듈의 방열 특성 평가)

  • Bae, Soohyun;Oh, Wonwook;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.39-42
    • /
    • 2018
  • When the PV module is illuminated in a high temperature region, solar cells are also exposed to the high temperature external environment. The operating temperature of the solar cell inside the module is increased, which causes the power drops. Various efforts have been made to reduce the operating temperature and compensate the power of solar cells according to the outdoor temperature such as installing of a cooling system. Researches have been also reported to lower the operating temperature of solar cells by improving the heat dissipation properties of the backsheet. In this study, we conducted a test to measure the internal temperature of each module components and the external temperature when the light was irradiated according to the surrounding temperature. Backsheets with different thermal conductivities were compared in the test. Finally, in order to explain the temperature difference between the solar cell and the outside of the module, we proposed an evaluation method of the heat transfer characteristics of photovoltaic modules with different backsheet.