• 제목/요약/키워드: Photosensitizers

검색결과 69건 처리시간 0.032초

Detection of 1270 nm Emission from Singlet Oxygen due to Photodynamic Therapy in vitro and in vivo.

  • Hirano, Toru;Kohno, Eiji;Ito, Toshiaki;Okazaki, Shigetoshi;Hirohata, Toru;Niigaki, Minoru;Kageyama, Kazumi;Miyaki, Sueo
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.515-517
    • /
    • 2002
  • Photodynamic therapy (PDT) is a cancer treatment modality which utilizes the cytotoxicity of the active singlet oxygen derived from irradiation of a tumor accumulated photosensitizer. As the oxygen in the singlet state radiates an emission of 1270nm wavelength when it decays to the triplet state, detection of the emission helps us to understand the mechanism of PDT or to evaluate photosensitizers. We detected the 1270nm emission from photosensitizers Photofrin and ATX-SI0 in vitro and in vivo by means of high sensitive NIR detectors. We obtained the maximum amount of singlet oxygen at irradiation wavelength of 665-670nm from a HeLa tumor in a nude mouse which is injected with ATX-S10.

  • PDF

새로운 광증감제 사용에 따른 UDMA 복합수지의 특성 (The properties of UDMA dental composite resin with novel photosensitizers)

  • 선금주
    • 대한치과기공학회지
    • /
    • 제35권3호
    • /
    • pp.209-218
    • /
    • 2013
  • Purpose: The purpose of this study was to know the availability of two photosensitizers, PD, DA, as a photosensitizer instead of CQ in UDMA dental composite resin. We want to know photopolymerization effect of UDMA unfilled resin and surface hardness of composite resin containing PD and DA were compared with those of CQ, most widely used photosensitizer for dental composite resins. Methods: The photopolymerization effect of UDMA studied by FT-IR spectroscopy increased with irradiation time and the amount of photosensitizer. Knoop hardness of experimental composite resins prepared by the addition of the photosensitizer content and irradiation time. Results: The relative photopolymerization effect of UDMA increased in the order of PD > CQ > DA. The composite resin of UDMA containing DA or PD, which shows better Knoop hardness than that containing CQ. Conclusion: PD and DA show as effective photosensizers, suitable for UDMA dental composite resin compare with a higher efficiency than CQ.

페노시아진을 이용한 염료감응형 태양전지 고효율 염료합성 (Synthesis and Photovoltaic Properties of Organic Photosensitizers for Application of Dye Sensitized Solar Cells)

  • 양현식;신소연;김연지;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.119.2-119.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) are currently attracting wide spread academic and commercial interest for the conversion of sunlight into electricity because of their easy manufacturing process and high efficiency. The solar energy conversion efficiencies of DSSC are strongly dependent on dye molecules adsorbed on the TiO2 surface which used for photosensitization of sun light, since an excited state of dye could inject an electron into the conduction band of semiconductor. We have developed novel organic dyes which have phenothiazine moieties as an electron donor in their charge-transfer chromophore for application of DSSCs. We had synthesized a series of phenothiazine derivatives which have different wave length absorbing chromophore in the molecule with high molar extinction coefficient. The photovoltaic performance of DSSC composed of organic chromophores with broad wavelength absorption property were measured and evaluated by comparison with that of pristine ruthenium dye.

  • PDF

QUENCHING OF TYPE II PHOTOSENSITIZER IN THEIR TRIPLET STATES BY $\alpha$-TOCOPHEROL VIA AN ELECTRON TRANSFER REACTION

  • Boo, Yong-Chool;Lee, Keum-Pyo;Jung, Jin
    • Journal of Photoscience
    • /
    • 제5권3호
    • /
    • pp.125-129
    • /
    • 1998
  • Occurrence of an electron (or H atom equivalent to one electron plus H+) transfer from $\alpha$- tocopherol $\alpha$(TOH) to a number of photosensitizers in theri triplet states were investigated by monitoring the ESR signal of $\alpha$-chromaoxyl radical ($\alpha$(TO.) in ethanolic solutions of $\alpha$TOH and the sensitizers under continuous illumination. Every sensitizer molecule examined, such as protocholorophyllide (Pchl), hematoporphyrin and rose bengal which are generally regarded as efficient type II photosensitizers and thus have long-lived triplet states, was found to actively participate in an electro transfer reaction with $\alpha$TOH even under air-saturation conditions, generating $\alpha$TOH complex as an intermediate in a fashion of Michaelis-Menten type of reaction. For the reaction of $\alpha$TOH with triplet Pchl, the rate law was derived by applying the steady approximation for the binary complex, triplet Pchl-$\alpha$TOH , which turned out to be well consistent with the kinetic data.

  • PDF

Photophysical Efficiency Factors of Singlet Oxygen Generation from Core-modified Trithiasapphyrin Derivatives

  • Ha, Jeong-Hyon;Kim, Min-Sun;Park, Yong-Il;Ryu, Shin-Hyung;Park, Mi-Gnon;Shin, Koo;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.281-285
    • /
    • 2002
  • The photophysical properties and the singlet oxygen generation efficiencies of meso-tetraphenyl-trithiasapphyrin $(S_3TPS)$ and meso-tetmkis(p-methoxy phenyl)-trithiasapphy rin ((p-MeO)-$S_3TPS$) have been investigated, utilizing steady-state and time-resolved spectroscopic methods to elucidate the possibility of their use as photosensitizers for photodynamic therapy (PDT). The observed photophysical properties were compared with those of other porphyrin-like photosensitizers in geometrical and electronic structural aspects, such as extended ${\pi}$ conjugation, structural distortion, and internal heavy atoms. The steady-state electronic absorption and fluorescence spectra were both red-shifted due to the extended ${\pi}$-conjugation. The fluorescence quantum yields were measured as very small. Even though intersystem crossing rates were expected to increase due to the increment of spin orbital coupling, the triplet quantum yields were measured as less than 0.15. Such characteristics can be ascribed to the more enhanced internal conversion rates compared with the intersystem crossing rates. Furthermore, the triplet state lifetimes were shortened to -1.0 ${\mu}s$ as expected. Therefore, the singlet oxygen quantum yields were estimated to be near zero due to the fast triplet state decay rates and the inefficient energy transfer to the oxygen molecule as well as the low triplet quantum yields. The low efficiencies of energy transfer to the oxygen molecule can be attributed to the lower oxidation potential and/or the energetically low lying triplet state. Such photophysical factors should be carefully evaluated as potential photosensitizers that have extended ${\pi}$-conjugation and heavy core atoms synthesized for red-shifted absorption and high triplet state quantum yields.

Antimicrobial Effects of Photodynamic Therapy Using Blue Light Emitting Diode with Photofrin and Radachlorine against Propionibacterium acnes

  • Kwon, Pil-Seung
    • 대한임상검사과학회지
    • /
    • 제47권1호
    • /
    • pp.6-10
    • /
    • 2015
  • Photodynamic therapy (PDT) apply photosensitizers and light. The purpose of this study was to evaluate the in vitro efficacy of PDT using blue LED (light emitting diode) with photofrin and radachlorin for Propionibacterium acnes. The colony forming units method was used to assess the antibacterial activity. Suspension (1 mL) containing P. acnes at $1{\times}10^5CFU/mL$ were prepared and then 2 fold serial diluted to $12.5{\mu}g/mL$ from $50{\mu}g/mL$ concentration of photofrin and radachlorin. After 60 minutes incubation, light was irradiated for 10 to 30 minutes using the following light source of wavelength 460 nm, each energy density 36, 72 and $108J/cm^2$. Bacterial growth was evaluated after 72 hours incubation in a Phenylethanol Blood Agar (PEBA) culture. In addition, flow cytometric analysis were performed to measure the live cell after PDT. Also transmission electron microscopy (TEM) was employed to evaluate the effect of pathogens by PDT. The PDT Group was perfectly killed to all kind of photosensitizers dose of $12.5{\mu}g/mL$ with irradiation of 10 minutes. Also other Groups were killed to all kind of photosensitizers dose of $6.25{\mu}g/mL$ with irradiation time of 20 and 30 minutes. The flow cytometry showed a lower number of viable bacteria in the PDT group compared to the control group. The images of the TEM results were showed in cytoplasmic membrane damage and partially deformed to cell morphologies. These results suggest that radachlorin and photofrin combine blue LED PDT can be effectively treated when was proved treatment for acnes therapy.

Clinical development of photodynamic agents and therapeutic applications

  • Baskaran, Rengarajan;Lee, Junghan;Yang, Su-Geun
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.303-310
    • /
    • 2018
  • Background: Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction: In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues. Those PS can be divided by its specific efficiency of ROS generation, absorption wavelength and chemical structure. Main body: Up to dates, several PS were approved for clinical applications or under clinical trials. $Photofrin^{(R)}$ is the first clinically approved photosensitizer for the treatment of cancer. The second generation of PS, Porfimer sodium ($Photofrin^{(R)}$), Temoporfin ($Foscan^{(R)}$), Motexafin lutetium, Palladium bacteriopheophorbide, $Purlytin^{(R)}$, Verteporfin ($Visudyne{(R)}$), Talaporfin ($Laserphyrin^{(R)}$) are clinically approved or under-clinical trials. Now, third generation of PS, which can dramatically improve cancer-targeting efficiency by chemical modification, nano-delivery system or antibody conjugation, are extensively studied for clinical development. Conclusion: Here, we discuss up-to-date information on FDA-approved photodynamic agents, the clinical benefits of these agents. However, PDT is still dearth for the treatment of diseases in specifically deep tissue cancer. Next generation PS will be addressed in the future for PDT. We also provide clinical unmet need for the design of new photosensitizers.

다양한 감광제와 아미노산의 조합 반응에서 nitro blue tetrazolium의 환원특성 평가 (Reduction of nitro blue tetrazolium by combined reaction of various photosensitizers with amino acids)

  • 이은빈;홍정일
    • 한국식품과학회지
    • /
    • 제54권1호
    • /
    • pp.1-7
    • /
    • 2022
  • 본 연구에서는 형광등 빛 조사 하에 각종 감광제와 아미노산의 조합에 의한 NBT의 환원 특성을 조사하였다. 기존 SOD 활성 측정에 이용된 Rb-Met 반응계는 증류수나 Tris보다는 PBS 용매 상에서 가장 우수한 효과를 나타냈다. 빛 조사 하에 Rb에 의한 NBT 환원을 위해서는 Met과 His 등의 아미노산이 필요하며, 감광제로서는 isoalloxazine 계열의 Rb와 thiazine 계열의 MB가 효과적인 환원 반응을 유도했다. 하지만 각종 감광제나 아미노산의 조합, 그리고 반응 용매에 따라 NBT 환원정도가 상이하며, 특히 Rb-Met in PBS와 MB-His in Tris 반응계가 가장 큰 반응을 유도하였다. Rb에 의해 유도된 NBT 환원반응은 SOD 및 gallic acid에 의해 효과적으로 저해되었으나, Tris 상에서 MB-His에 의한 NBT 환원은 SOD 및 gallic acid에 의한 저해효과가 미미하여 Rb와는 다른 기작에 의해 NBT 환원이 유도되는 것으로 보인다. 본 결과는 감광제와 아미노산에 따라 빛 조사 하에 다양한 상호작용이 발생하며, NBT 환원을 유도하는데 superoxide anion 뿐만 아니라 다른 요인도 관여할 수 있음을 시사한다.

카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성 (Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells)

  • 김명석;정대영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF