Acknowledgement
본 연구는 과학기술정보통신부의 재원의 한국연구재단 중견 및 일반연구자 지원사업(NRF-2019R1A2C1089617와 NRF-2021R1F1A1051466)에 의해 수행되었음.
References
- Abe H, Ikebuchi K, Wagner SJ, Kuwabara M, Kamo N, Sekiguchi S. Potential involvement of both type I and type II mechanisms in M13 virus inactivation by methylene blue photosensitization. Photochem. Photobiol. 66: 204-208 (1997) https://doi.org/10.1111/j.1751-1097.1997.tb08644.x
- Benitez FJ, Real FJ, Acero JL, Leal AI, Garcia C. Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton's reagent, and the photo-Fenton system. J. Hazard. Mater. 126: 31-39 (2005) https://doi.org/10.1016/j.jhazmat.2005.04.040
- Bournonville CFG, Diaz-Ricci JC. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem. Analysis 22: 268-271 (2011) https://doi.org/10.1002/pca.1275
- Cardoso DR, Libardi SH, Skibsted LH. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 3: 487-502 (2012) https://doi.org/10.1039/c2fo10246c
- Chatti IB, Boubaker J, Skandrani I, Bhouri W, Ghedira K, Chekir Ghedira L. Antioxidant and antigenotoxic activities in Acacia salicina extracts and its protective role against DNA strand scission induced by hydroxyl radical. Food Chem. Toxicol. 49: 1753-1758 (2011) https://doi.org/10.1016/j.fct.2011.04.022
- Cheng CW, Chen LY, Chou CW, Liang JY. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity. J. Photoch. Photobio. B. 148: 262-267 (2015) https://doi.org/10.1016/j.jphotobiol.2015.04.028
- Choi HS, Kim JW, Cha YN, Kim CK. A Quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J. Immunoass. Immunoch. 27: 31-44 (2006) https://doi.org/10.1080/15321810500403722
- Culler-Juarez ME, Onthank KL. Elevated immune response in Octopus rubescens under ocean acidification and warming conditions. Mar. Biol. 168: 1-10 (2021) https://doi.org/10.1007/s00227-020-03798-4
- Dong H, Sans C, Li W, Qiang Z. Promoted discoloration of methyl orange in H2O2/Fe (III) Fenton system: Effects of gallic acid on iron cycling. Sep. Purif. Technol. 171: 144-150 (2016) https://doi.org/10.1016/j.seppur.2016.07.033
- Flohe L, Otting F. Superoxide dismutase assays. Methods Enzymol. 105: 93-104 (1984) https://doi.org/10.1016/S0076-6879(84)05013-8
- Gao J, Matthews KR. Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin. Food Control 109: 106959 (2020) https://doi.org/10.1016/j.foodcont.2019.106959
- Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, Wang Y, Wang L, Hong Y, Sha Y, Jiang, Y. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 14: 9532-9544 (2019) https://doi.org/10.1021/acsnano.9b05169
- Huang R, Choe E, Min D. Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen. J. Food Sci. 69: C726-C732 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb09924.x
- Mao JW, Yin J, Ge Q, Jiang ZL, Gong JY. In vitro antioxidant activities of polysaccharides extracted from Moso Bamboo-Leaf. Int. J. Biol. Macromol. 55: 1-5 (2013) https://doi.org/10.1016/j.ijbiomac.2012.12.027
- Mironova R, Niwa T, Handzhiyski Y, Sredovska A, Ivanov I. Evidence for non-enzymatic glycosylation of Escherichia coli chromosomal DNA. Mol. Microbiol. 55: 1801-1811 (2005) https://doi.org/10.1111/j.1365-2958.2005.04504.x
- Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247: 3170-3175 (1972) https://doi.org/10.1016/S0021-9258(19)45228-9
- Moradi A, Abolfathi M, Javadian M, Heidarian E, Roshanmehr H, Khaledi M, Nouri A. Gallic acid exerts nephroprotective, antioxidative stress, and anti-inflammatory effects against diclofenacinduced renal injury in malerats. Arch. Med. Res. 52: 380-388 (2021) https://doi.org/10.1016/j.arcmed.2020.12.005
- Piacham T, Isarankura Na Ayudhya C, Prachayasittikul V, Bulow L, Ye L. A polymer supported manganese catalyst useful as a superoxide dismutase mimic. Chem. Commun. 3: 1254-1255 (2003)
- Samson AAS, Lee J, Song JM. Inkjet printing-based photo-induced electron transfer reaction on parchment paper using riboflavin as a photosensitizer. Anal. Chim. Acta 1012: 49-59 (2018) https://doi.org/10.1016/j.aca.2018.02.004
- Xu C, Liu S, Liu Z, Song F, Liu S. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: A simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples. Anal. Chim. Acta 793: 53-60 (2013) https://doi.org/10.1016/j.aca.2013.07.027
- Yang MY, Chang CJ, Chen LY. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells. J. Photoch. Photobio. B 173: 325-332 (2017) https://doi.org/10.1016/j.jphotobiol.2017.06.014
- Yoshimoto S, Kohara N, Sato N, Ando H, Ichihashi M. Riboflavin plays a pivotal role in the UVA-induced cytotoxicity of fibroblasts as a key molecule in the production of H2O2 by UVA radiation in collaboration with amino acids and vitamins. Int. J. Mol. Sci. (2020)
- Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell. Microbiol. 10: 2043-2057 (2008) https://doi.org/10.1111/j.1462-5822.2008.01186.x