• Title/Summary/Keyword: Photonic crystal waveguide

Search Result 38, Processing Time 0.021 seconds

Nano stamp fabrication for photonic crystal waveguides (나노 광소자용 나노스탬프 제조공정 연구)

  • Jeong, Myung-Yung;Jung, Une-Teak;Kim, Chang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.16-21
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for the manipulation of light. The existence of a photonic bandgap, a frequency range in which the propagation of light is prevented in all directions, makes photonic crystal very useful in application where the spatial localization of light is required, for example waveguide, beam splitter, and cavity. However, the fabrication of 3 dimensional photonic crystals is still difficult process. A concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air and perforated with two dimensional lattice of hole. The fabrication of Si master with pillar structure using hot embossing process is investigated for two dimensional, low-index-contrast photonic crystal waveguide. From our research we show that the multiple stamp copy process proved to be feasible and useful.

Nano imprinting lithography fabrication for photonic crystal waveguides (나노 임프린트 공정에 의한 광자결정 도파로 제조공정)

  • Jung Une-Teak;Kim Chang-Soek;Jeong Myung-Yung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.498-501
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for manipulation of light. The existence of a photonic bandgap, a frequency range in which propagation of light is prevented in all direction, makes photonic crystal very useful in application where spatial localization of light is required for waveguide, beam splitter, and cavity. But fabrication of 3 dimensional photonic crystal is still difficult process. a concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air, and perforated with 2 dimensional lattice of hole. We show that the polymer slabs suspended in air with triangular lattice of air hole can exhibit the in-plane photonic bandgap for TE-like modes. The fabrication of Si master with pillar structure using hot embossing process was investigated for 2 dimensional low-index-contrast photonic crystal waveguide.

  • PDF

Directional Emission from Photonic Crystal Waveguide Output by Terminating with CROW and Employing the PSO Algorithm

  • Bozorgi, Mahdieh;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.187-195
    • /
    • 2011
  • We have designed two photonic crystal waveguide (PCW) structures with output focused beams in order to achieve more coupling between photonic devices and decrease the mismatch losses in photonic integrated circuits. PCW with coupled resonator optical waveguide (CROW) termination has been optimized by both one dimensional (1D) and seven dimensional (7D) particle swarm optimization (PSO) algorithms by evaluating the fitness function by the finite difference time domain (FDTD) method. The 1D and 7D-optimizations caused the factors of 2.79 and 3.875 improvements in intensity of the main lobe compared to the non-optimized structure, whereas the FWHM in 7D-optimized structure was increased, unlike the 1D case. It has also been shown that the increment of focusing causes decrement of the bandwidth.

Midinfrared Refractive-index Sensor with High Sensitivity Based on an Optimized Photonic Crystal Coupled-cavity Waveguide

  • Han, Shengkang;Wu, Hong;Zhang, Hua;Yang, Zhihong
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.444-449
    • /
    • 2021
  • A photonic crystal coupled-cavity waveguide created on silicon-on-insulator is designed to act as a refractive-index-sensing device at midinfrared wavelengths around 4 ㎛. To realize high sensitivity, effort is made to engineer the structural parameters to obtain strong modal confinement, which can enhance the interaction between the resonance modes and the analyzed sample. By adjusting some parameters, including the shape of the cavity, the width of the coupling cavity, and the size of the surrounding dielectric columns, a high-sensitivity refractive-index sensor based on the optimized photonic crystal coupled-cavity waveguide is proposed, and a sensitivity of approximately 2620 nm/RIU obtained. When an analyte is measured in the range of 1.0-1.4, the sensor can always maintain a high sensitivity of greater than 2400 nm/RIU. This work demonstrates the viability of high-sensitivity photonic crystal waveguide devices in the midinfrared band.

Study of Photonic Crystal Waveguide in Microwave Regime Using 3D FDTD Simulation (3차원 FDTD모사를 이용한 마이크로웨이브 영역에서의 광결정 도파로에 관한 연구)

  • Han, Seung-Ho;Park, Q-Han;Roh, Young-Geun;Heonsu leon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.184-185
    • /
    • 2003
  • Unlike the conventional waveguide such as optical fiber using total internal reflection, photonic crystal waveguide(PCW), a waveguide made of a line defect in a photonic crystal(PC) structure, does not admit an analytic approach due to its complexity but requires a direct numerical approach. Here, we present numerical results of computer simulation for PCW by using the three-dimensional(3D) Finite-Difference Time -Domain(FDTD) algorithm. (omitted)

  • PDF

Temperature Stabilization of Group Index in Silicon Slotted Photonic Crystal Waveguides

  • Aghababaeian, Hassan;Vadjed-Samiei, Mohammad-Hashem;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.398-402
    • /
    • 2011
  • In this paper, we have proposed a principle to design wideband, low dispersion and temperature stabilized slow light structure in slotted photonic crystal waveguide (SPCW). The infiltration of the silicon photonic crystal with polymer will enhance the slow light and increase the group index, whereas the different signs of thermo-optic coefficients of polymer and silicon make the proposed structure stable on temperature variation over $60^{\circ}C$ and improves the group index-bandwidth products of the designed structure. The SPCW structure is modified to maximize the slow light effect and minimize the dependence of the group index and hence the group velocity dispersion to temperature.

Duality of Photonic Crystal Radiative Structures and Antenna Arrays

  • Bozorgi, Mahdieh;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.438-443
    • /
    • 2010
  • In this paper, behaviors of photonic crystal (PC) radiative structures and antenna arrays have been compared for two types of uniform and binomial excitations. Appropriate duality has been shown between them. These results can be generalized to other types of excitation and arrangement of photonic crystal radiative arrays such as linear, planar and circular arrays of three dimensional (3D) photonic crystal termination resonators. Using these results in designing photonic circuits has some advantages for shaping a particular radiative beam at the photonic crystal exit, for instance reducing the divergence angle of the main lobe in order to enhance the directivity, for better coupling, or for splitting the emitted beam, for dividing the output beam to the next devices in photonic integrated circuits (PIC). For analysis and simulation of the photonic crystal structures, the finite difference time domain (FDTD) method has been employed.

Wideband Slow Light in a Line-defect Annular Photonic-crystal Waveguide

  • Kuang, Feng;Li, Feng;Yang, Zhihong;Wu, Hong
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.438-444
    • /
    • 2019
  • In this theoretical study, a line-defect photonic-crystal waveguide hosted in an annular photonic crystal was demonstrated to provide high-performance slow light with a wide band, low group-velocity dispersion, and a large normalized delay-bandwidth product. Combined with structural-parameter optimization and selective optofluid injection, the normalized delay-bandwidth product could be enhanced to a large value of 0.502 with a wide bandwidth of 58.4 nm in the optical-communication window, for a silicon-on-insulator structure. In addition, the group-velocity dispersion is on the order of $10^5$ ($ps^2/km$) in the slow-light region, which could be neglected while keeping the signal transmission unchanged.

Design of Novel Hybrid Optical Modulator Incorporating Electro-Optic Polymer Waveguide into Silicon Photonic Crystal (실리콘/폴리머 물질 기반의 하이브리드 광 결정 광변조기 설계)

  • Sung, Jun-Ho;Lee, Min-Woo;Choi, Chul-Hyun;Lee, Seung-Gol;Park, Se-Guen;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.187-192
    • /
    • 2008
  • The design and analysis of a novel photonic crystal electro-optic modulator are presented in this paper. The device incorporates an electro-optic (EO) polymer slot waveguide into the center of a silicon photonic crystal waveguide. In this device, strong optical confinement in the EO polymer core and small group velocity from the photonic crystal structure provide a surprise enhancement of the EO effect.

Tunable Slow Light with Large Bandwidth and Low-dispersion in Photonic Crystal Waveguide Infiltrated with Magnetic Fluids

  • Lei, Weizheng;Pu, Shengli
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.110-113
    • /
    • 2015
  • Two kinds of magnetic fluids with different volume fractions are symmetrically filled into the W0.9 photonic crystal waveguide structure. The 2D plane-wave expansion method is used to investigate the slow light properties numerically. The constant group index criterion is employed to evaluate the slow light performance. The wavelength bandwidth ${\Delta}{\lambda}$ centering at ${\lambda}_0=1550nm$ varies from 32.4 to 44.2 nm when the magnetic field factor ${\alpha}_{\parallel}$ changes from 0 to 1. And the corresponding normalized delay bandwidth product can be tuned from 0.221 to 0.258. For comparison and optimization, two infiltration cases are investigated and the more advantageous infiltration scheme is found.