DOI QR코드

DOI QR Code

Directional Emission from Photonic Crystal Waveguide Output by Terminating with CROW and Employing the PSO Algorithm

  • Bozorgi, Mahdieh (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology) ;
  • Granpayeh, Nosrat (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
  • Received : 2011.03.21
  • Accepted : 2011.05.03
  • Published : 2011.06.25

Abstract

We have designed two photonic crystal waveguide (PCW) structures with output focused beams in order to achieve more coupling between photonic devices and decrease the mismatch losses in photonic integrated circuits. PCW with coupled resonator optical waveguide (CROW) termination has been optimized by both one dimensional (1D) and seven dimensional (7D) particle swarm optimization (PSO) algorithms by evaluating the fitness function by the finite difference time domain (FDTD) method. The 1D and 7D-optimizations caused the factors of 2.79 and 3.875 improvements in intensity of the main lobe compared to the non-optimized structure, whereas the FWHM in 7D-optimized structure was increased, unlike the 1D case. It has also been shown that the increment of focusing causes decrement of the bandwidth.

Keywords

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). https://doi.org/10.1103/PhysRevLett.58.2059
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). https://doi.org/10.1103/PhysRevLett.58.2486
  3. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999). https://doi.org/10.1063/1.123116
  4. K. Umemori, Y. Kanamori, and K. Hane, "Photonic crystal waveguide switch with a microelectromechanical actuator," Appl. Phys. Lett. 89, 021102-1-021102-3 (2006). https://doi.org/10.1063/1.2219996
  5. Y. Sugimoto, S. Lan, S. Nishikawa, N. Ikeda, H. Ishikawa, and K. Asakawa, "Design and fabrication of impurity bandbased photonic crystal waveguides for optical delay lines," Appl. Phys. Lett. 81, 1946-1948 (2002). https://doi.org/10.1063/1.1506411
  6. A. R. M. Javan and N. Granpayeh, "Terahertz wave switch based on photonic crystal ring resonators," Opt. Quantum Electron. 40, 695-705 (2008). https://doi.org/10.1007/s11082-008-9257-y
  7. C. S. Kee, D. K. Ko, and J. Lee, "Functional optical filters based on two-dimensional photonic crystals," Korean Phys. Soc. 48, 978-981 (2006).
  8. H. Kurt, "Limited-diffraction light propagation with axiconshape photonic crystals," J. Opt. Soc. Am. B 26, 981-986 (2009). https://doi.org/10.1364/JOSAB.26.000981
  9. H. Caglayan, I. Bulu, and E. Ozbay, "Beaming of electromagnetic waves emitted through a subwavelength annular aperture," J. Opt. Soc. Am. B 23, 419-422 (2006). https://doi.org/10.1364/JOSAB.23.000419
  10. E. Moreno, F. J. Garcia-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402-1-121402-4 (2004). https://doi.org/10.1103/PhysRevB.69.121402
  11. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903-1-113903-4 (2004). https://doi.org/10.1103/PhysRevLett.92.113903
  12. H. Kurt, "Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits," IEEE Photon. Technol. Lett. 20, 1682-1684 (2008). https://doi.org/10.1109/LPT.2008.2003403
  13. S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 08111-1-08111-3 (2005).
  14. W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114-1-111114-3 (2005). https://doi.org/10.1063/1.1885170
  15. D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008). https://doi.org/10.1007/s00340-008-3259-0
  16. C. C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tünnermann, "Directional emission from photonic crystal waveguides," Opt. Express 14, 2423-2428 (2006). https://doi.org/10.1364/OE.14.002423
  17. D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120-1-131120-3 (2006). https://doi.org/10.1063/1.2354428
  18. Y. L. Zhang, Y. Zhang, and B. J. Li, "Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides," Opt. Express 15, 9281-9286 (2007). https://doi.org/10.1364/OE.15.009281
  19. Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupledresonator optical waveguides," Appl. Phys. B 86, 327-331 (2007). https://doi.org/10.1007/s00340-006-2457-x
  20. Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105-1-121105-3 (2007). https://doi.org/10.1063/1.2786590
  21. I. Bulu, H. Caglayan, and E. Ozbay, "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078-3080 (2005). https://doi.org/10.1364/OL.30.003078
  22. K. B. Chung, "Properties of surface modes used for directional emission from photonic crystal waveguides," J. Opt. Soc. Korea 12, 7-12 (2008). https://doi.org/10.3807/JOSK.2008.12.1.007
  23. K. B. Chung, "Effects of surface termination on directional emission from photonic crystal waveguides," J. Opt. Soc. Korea 12, 13-18 (2008). https://doi.org/10.3807/JOSK.2008.12.1.013
  24. M. Bozorgi and N. Granpayeh, "Duality of photonic crystal radiative structures and antenna arrays," J. Opt. Soc. Korea 14, 438-443 (2010). https://doi.org/10.3807/JOSK.2010.14.4.438
  25. Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110-1-105110-5 (2008). https://doi.org/10.1088/0022-3727/41/10/105110
  26. R. Moussa, B. Wang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, "Effect of beaming and enhanced transmission in photonic crystals," Phys. Rev. B 76, 235417-1-235417-8 (2007). https://doi.org/10.1103/PhysRevB.76.235417
  27. D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120-1-131120-3 (2006). https://doi.org/10.1063/1.2354428
  28. H. Chen, Y. Zeng, X. Chen, J. Wang, and W. Lu, "Modulation of focus using photonic crystal waveguide," Phys. Lett. A 372, 5096-5100 (2008). https://doi.org/10.1016/j.physleta.2008.05.076
  29. H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114-1-092114-3 (2008). https://doi.org/10.1063/1.2842424
  30. W. Y. Liang, J. W. Dong, and H. Z. Wang, "Directional emitter and beam splitter based on self-collimation effect," Opt. Express 15, 1234-1239 (2007). https://doi.org/10.1364/OE.15.001234
  31. L. Jiang, W. Jia, H. Li, X. Li, C. Cong, and Z. Shen, "Inverse design for directional emitter and power splitter based on photonic crystal waveguide with surface corrugations," J. Opt. Soc. Am. B 26, 2157-2160 (2009). https://doi.org/10.1364/JOSAB.26.002157
  32. Q. Wang, J. Zhang, C. Yan, and Y. Cui, "Beaming effect in multimode photonic crystal by using coupled waveguides," Phys. Lett. A 373, 1097-1100 (2009). https://doi.org/10.1016/j.physleta.2009.01.033
  33. W. Smigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430-1-205430-8 (2007). https://doi.org/10.1103/PhysRevB.75.205430
  34. H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008). https://doi.org/10.1016/j.physb.2008.09.020
  35. W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Geometry projection method for optimizing photonic nanostructures," Opt. Lett. 32, 77-79 (2007). https://doi.org/10.1364/OL.32.000077
  36. L. Jiang, H. Li, W. Jia, X. Li, and Z. Shen, "Genetic optimization of photonic crystal waveguide termination for both on-axis and off-axis highly efficient directional emission," Opt. Express 17, 10126-10135 (2009). https://doi.org/10.1364/OE.17.010126
  37. J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proc. IEEE International Conference on Neural Networks (Piscataway, NJ, USA, 1995), pp. 1942-1948.
  38. J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence (Academic, San Francisco, USA, 2001).
  39. F. T. S. Chan and M. K. Tiwari, Swarm Intelligence Focus on Ant and Particle Swarm Optimization (I-Tech Education and Publishing, Vienna, Austria, 2007).
  40. N. Nedjah, L. S. Coelho, and M. Mourelle, Swarm Intelligent Systems (Springer-Verlag Berlin Heidelberg, New York, USA, 2006).
  41. Y. Li, D. Yao, J. Yao, and W. Chen, "A particle swarm optimization algorithm for beam angle selection in intensitymodulated radiotherapy planning," Phys. Med. Biol. 50, 3491-3514 (2005). https://doi.org/10.1088/0031-9155/50/15/002
  42. S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," PIER 79, 353-366 (2008). https://doi.org/10.2528/PIER07101702
  43. J. Kennedy and W. M. Spears, "Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on multi modal problem generator," in Proc. IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence (Anchorage, AK, USA, 1998), pp. 28-83. https://doi.org/10.1109/ICEC.1998.699326
  44. A. Marandi, F. Afshinmanesh, M. Shahabadi, and F. Bahrami, "Boolean particle swarm optimization and its application to the design of a dual-band dual-polarized planar antenna," in Proc. IEEE Conference on Evolutionary Computation (Vancouver, BC, Canada, 2006), pp. 3212-3218. https://doi.org/10.1109/CEC.2006.1688716
  45. Y. Li, "Hybrid intelligent approach for modeling and optimization of semiconductor devices and nanostructures," Comput. Mater. Sci. 45, 41-51 (2009). https://doi.org/10.1016/j.commatsci.2008.04.030
  46. M. Djavid, S. A. Mirtaheri, and M. S. Abrishamian, "Photonic crystal notch filter design using particle swarm optimization theory and finite difference time domain analysis," J. Opt. Soc. Am. B 26, 849-853 (2009). https://doi.org/10.1364/JOSAB.26.000849
  47. B. S. Darki and N. Granpayeh, "Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method," Opt. Comm. 283, 4099-4103 (2010). https://doi.org/10.1016/j.optcom.2010.06.013
  48. A. Marandi, F. Afshinmanesh, and P. P. M. So, "Design of a highly focused photonic crystal lens using boolean particle swarm optimization," in Proc. The 20th Annual Meeting of the IEEE Lasers and Electro-optics Society (LEOS) (Florida, USA, 2007), pp. 931-932. https://doi.org/10.1109/LEOS.2007.4382716
  49. M. S. Kumar, S. Menabde, S. Yu, and N. Park, "Directional emission from photonic crystal waveguide terminations using particle swarm optimization," J. Opt. Soc. Am. B 27, 343-349 (2010). https://doi.org/10.1364/JOSAB.27.000343
  50. J. Robinson and Y. R-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag. 52, 397-407 (2004). https://doi.org/10.1109/TAP.2004.823969
  51. F. Afshinmanesh, A. Marandi, P. P. M. So, and R. Gordon, "Proposal for compact optical filters using large index step binary supergratings," IEEE Photon. Technol. Lett. 20, 676-678 (2008). https://doi.org/10.1109/LPT.2008.919600

Cited by

  1. Thermo-optic Characteristics of Micro-structured Optical Fiber Infiltrated with Mixture Liquids vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.231
  2. Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.237
  3. A novel reliable optimization method for output beam forming of photonic crystal waveguide terminated with surface CROW vol.126, pp.4, 2015, https://doi.org/10.1016/j.ijleo.2014.10.002
  4. Simulation and Optimization of Nonperiodic Plasmonic Nano-Particles vol.18, pp.1, 2014, https://doi.org/10.3807/JOSK.2014.18.1.082