DOI QR코드

DOI QR Code

Tunable Slow Light with Large Bandwidth and Low-dispersion in Photonic Crystal Waveguide Infiltrated with Magnetic Fluids

  • Lei, Weizheng (College of Science, University of Shanghai for Science and Technology) ;
  • Pu, Shengli (College of Science, University of Shanghai for Science and Technology)
  • Received : 2015.02.06
  • Accepted : 2015.06.11
  • Published : 2015.06.30

Abstract

Two kinds of magnetic fluids with different volume fractions are symmetrically filled into the W0.9 photonic crystal waveguide structure. The 2D plane-wave expansion method is used to investigate the slow light properties numerically. The constant group index criterion is employed to evaluate the slow light performance. The wavelength bandwidth ${\Delta}{\lambda}$ centering at ${\lambda}_0=1550nm$ varies from 32.4 to 44.2 nm when the magnetic field factor ${\alpha}_{\parallel}$ changes from 0 to 1. And the corresponding normalized delay bandwidth product can be tuned from 0.221 to 0.258. For comparison and optimization, two infiltration cases are investigated and the more advantageous infiltration scheme is found.

Keywords

References

  1. J. B. Khurgin and R. S. Tucker. Slow Light: Science and Applications, CRC, Boca Raton (2009). pp. 59-75.
  2. Y. Wan, Y. Guo, Y. Zhang, and M. Yun, Opt. Appl. 43, 831 (2013).
  3. K. Zhu, T. Deng, Y. Sun, Q. Zhang, and J. Wu, Opt. Commun. 290, 87 (2013). https://doi.org/10.1016/j.optcom.2012.10.055
  4. J. Tang, T. Wang, X. Li, B. Liu, B. Wang, and Y. He, J. Opt. Soc. Am. B 31, 1011 (2014). https://doi.org/10.1364/JOSAB.31.001011
  5. B. Meng, L. Wang, X. Li, W. Xiao, L. Wang, and D. Xiang, Opt. Commun. 285, 3704 (2012). https://doi.org/10.1016/j.optcom.2012.04.027
  6. K. Zhu, T. Deng, Y. Sun, Q. Zhang, and J. Wu, Opt. Commun. 285, 2611 (2012). https://doi.org/10.1016/j.optcom.2012.01.064
  7. K. Ustun and H. Kurt, ICTION Conf. Proc. 14, 1 (2012).
  8. J. Wu, Y. Li, C. Peng, and Z. Wang, Opt. Commun. 284, 2149 (2011). https://doi.org/10.1016/j.optcom.2011.01.004
  9. H. E. Horng, C.-Y. Hong, S. Y. Yang, and H. C. Yang, Appl. Phys. Lett. 82, 2434 (2003). https://doi.org/10.1063/1.1568147
  10. H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, Opt. Lett. 38, 3765 (2013). https://doi.org/10.1364/OL.38.003765
  11. S. Pu, H. Wang, N. Wang, and X. Zeng, Appl. Phys. B, 112, 223 (2013). https://doi.org/10.1007/s00340-013-5422-5
  12. S. Pu, S. Dong, and J. Huang, J. Opt. 16, 045102 (2014). https://doi.org/10.1088/2040-8978/16/4/045102
  13. M. Jahanbakhshian and R. Karimzadeh, Laser Phys. 24, 105903 (2014). https://doi.org/10.1088/1054-660X/24/10/105903
  14. C. Fan, G. Wang, and J. Huang, J. Appl. Phys. 103, 094107 (2008). https://doi.org/10.1063/1.2921133
  15. J. Huang, and K. Yu, Phys. Rep. 431, 87 (2006). https://doi.org/10.1016/j.physrep.2006.05.004
  16. C. Fan and J. Huang, Appl. Phys. Lett. 89, 141906 (2006). https://doi.org/10.1063/1.2356089
  17. Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, Phys. Rev. Lett. 104, 034501 (2010). https://doi.org/10.1103/PhysRevLett.104.034501
  18. M. Qiu, Appl. Phys. Lett. 81, 1163 (2002). https://doi.org/10.1063/1.1500774
  19. D. Gao and Z. Zhou, Appl. Phys. Lett. 88, 163105 (2006). https://doi.org/10.1063/1.2194887
  20. J. Tang, T. Wang, X. Li, B. Wang, C. Dong, L. Gao, B. Liu, Y. He, and W. Yan, J. Lightwave Technol. 31, 3188 (2013). https://doi.org/10.1109/JLT.2013.2280716
  21. Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, Appl. Opt. 52, 1155 (2013). https://doi.org/10.1364/AO.52.001155
  22. V. Varmazyari, H. Habibiyan, and H. Ghafoorifard, SOP Trans. Appl. Phys. 1, 55 (2014). https://doi.org/10.15764/AM.2014.02006
  23. M. Janfaza and M.-A. Mansouri-Birjand, Opt. Commun. 333, 58 (2014). https://doi.org/10.1016/j.optcom.2014.07.051