• Title/Summary/Keyword: Photoelastic stress analysis

Search Result 113, Processing Time 0.029 seconds

Computation of stress Intensity Factors of Hollow Cylinder with Three Dimension Inclination Cracks (3차원 경사크랙을 가진 중공축의 응력확대계수산정)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • In this study, stress intensity factors KI, KII, KIII are existing at the same time to a hollow cylindrical bar of three dimension inclination crack. In order to investigate by experimentally the effect of the inclination angle $\psi$ of crack, artificial inclination cracks in the circumferential direction are put in the surface of a hollow cylindrical bar made by the epoxy-resin. Experimentally, stress analysis methods of stress intensity factors were proposed. But, suitable method are the caustic method and the photoelastic stress freezing method. The mixed mode of KI, and KII, were determined by the photoelastic method of the classical approach method and the FORTRAN language program of the used smallest square method.

  • PDF

ANALYSIS FOR 3-POINT LOADED DISC BY PHOTOELASTICITY (3점 압축하중을 받는 원판의 광탄성 해석)

  • 함경춘;이하성
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1992
  • Disc specimen with the center crack and edge crack simulated by two-dimensional static method is used to analyze the stress field around the crack tip in terms of the stress intensity factor, K. A simple and convenient method of testing to realize the mifed mode stress intensity factor of the cracked body is used, The conclusions obtatined in this photoelastlc analysis are as follows ; 1. According to this experiment, cracked disc specimen can be used to demonstrate the mixed mode stress intensity factor analysis by simply changing the crack angle from the loading line. 2. Despite the simplicity and continuous data reading, the photoelastic method shows the slightly lower strain reading comparing to the FEM analysis method. 3. In this photoelastic analysis, $K_{I}$ of center cracked disc specimen under a pair of compressive load shows negative value as the crack angle increases over 30$^{\circ}$.

  • PDF

Stress Measurement of a Squarely Perforated Plate by Photoelastic Phase Shifting Method (광탄성 위상이동법에 의한 사각형 구멍주위의 응력해석)

  • Lee C.T.;Park T.G.;Jung J.;Panganiban H.;Chung T.J.;Baek T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.49-50
    • /
    • 2006
  • Photoelasticity is widely and conveniently used methods for whole field stress analysis. In this paper, 8-step photoelastic phase shifting method was performed by using a multi-purpose polariscope to measure the fringe orders along a specified line on the specimen containing a square hole. The material of the specimen is made of Polycarbonate. The measurement results by 8-step phase shifting method were compared with the those calculated by ABAQUS.

  • PDF

The Effect of Trunk Position on the Stress Distribution of Low-back and on the Spondylolisis (I) -Development on the Photoelastic Experimental Model and Device for the Stress Analysis of Low-Lumbar Spine- (체간 위치가 하요추부의 응력상태와 척추분리증에 미치는 영향 (I) -하요추부의 응력 상태 측정용 광탄성 실험 모델 재료개발과 장치개발-)

  • 황재석;최영철;안면환;권재도;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.723-736
    • /
    • 1992
  • Most degeneating diseases and back pains in the orthopaedic disease are originated from the unbalance of stress distribution in the low-lumbar spine. Therefore the stress analysis of lowerback is indispensible to the clinical diagnosis for the developing reason and the developing process of diseases. Therefore the same model materials as following are eveloped to analyze the stress distributions of lower-back by photoelastic experiment. The verterbral body and the process are molded from epoxy resin(the weight ratio of Araldite and hardner is 10 to 3), models are geometrically identical to them in vivo respectively and the ratio of their elastic modulus to that of model material is 1 to 10. It is assured that KE-1300 Silicon(E=0.8MPa), TSE-3562 Silicon(0.5MPa) and the composite silicon(3MPa) (the weight ratio of KE-1300 silicon and Jioreal : 10 to 4) are respectively effective as the model materials of ligament, musles and intervertevral disc which is essential to the movement of low-lumbar spine. All the elements associated with the movement of the low-lumbar spine are molded through the molding method developed in this research and assembled with the angles between the verterbra and the disc in the normal human lumbosacral spine. The stress distributions of the assembled model are analyzed by photoelastic experiment. It is certified by comparing the results of photoelastic experimebt with the clinical situations that the loading dveice and the loading conceptions used in this paper are effective.

Stress Analysis of Fir-Tree Root in Turbine Rotor Using Photoelastic Technique (광탄성기법을 이용한 터빈로터 퍼-트리부의 응력해석)

  • Sin, Gwang-Bok;Gyeong, U-Min;Hong, Chang-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1784-1797
    • /
    • 1996
  • The disk/blade assembly of a turbine engine is made in the shape of a dovetail type or a fir-tree type. Since disk fillet regions or contact surfaces undergo high stress comcentration, fatigue cracks frequentrly occur in the disk/blade assembly. Therefore, it is necessary to analyze the stress distributions in the fir-tree type disk/balde assembly and predict the region of fatigue failure. The stress distributions of the disk/blade assembly were investigated by using the photoelastic method and the finite element method. Two dimensional photoelastic techniques were used to investigate the stress distributions of contact surfaces and fillet regions. TH stress distributions were obtained by the shear-difference method and were compared to the finite element results. It was found that maximum tensile stresses were higher in the fillet region thatn in the contact surfaces of the fir-tree models. The finite element results showed good agreement with the experimental results.

Photoelastic Stress Analysis of Proximal Margins in Dental Restorations (치관보철물(齒冠補綴物)의 인접변연부위(隣接邊緣部位)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析))

  • Lim, Chung-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.37-47
    • /
    • 1980
  • The purpose of this study was to investigate the stresses in different proximal margins and to measure, quantitatively, the effect of different modifications in the design of preparations on the stresses using two-dimensional photoelasticity. Photoelastic stress analysis is based on the phenomenon, exhibited by most transparent solids, of becoming birefringent, or doubly refracting, when strained. Two birefringent materials were used in this study, PSM-1 and PSM-5 in .standard sheet ($10'{\times}10'{\times}\frac{1}{4}'$ thickness), PSM-1(polyester) was used for constructing the substructure, and PSM-5(epoxy resin) was used in making the restorations to be investigated. Two birefringent materials were used in the construction of composite photoelastic model. Seven variable models were constructed. The peripheral dimensions of all model were constant and the models represent an occlusomesial section of a lower posterior molar. Model 1 represents the knife edge margin (shoulderless), Model 2 represents the chamfer, Model 3 represents a rounded shoulder(no sharp angle between the axial wall and gingival floor), Model 4 represents a flat shoulder (axial wall is a $90^{\circ}$ angle to the gingival wall), Model 5 represents $+15^{\circ}$ angulation, Model 6 has a $-15^{\circ}$ angulation, and Model 7 is the same as Model 4 except that it has a $45^{\circ}$ bevel. Improved artificial stone was used to represent dental cement in luting the composite photoelastic model. Static loading procedures(100 pounds) were used at preplanned sites. The results were as follows; 1. The stresses in the proximal portion of all tested models were compressive in nature when the proximal shoulders were loaded vertically on the same proximal marginal ridge. 2. The round and chamfered preparations were the optimum designs in proximoocclusal restorations. They showed the lowest stress concentration factor, i.e. 2.16 and 2.23, respectively. The knife edged shoulder had the highest value, K=5.39. Round type shoulder geometry experiments reduced the stress concentration factor (S.C.F.) 3. The gingival portion of proximal shoulder geometry was a critical location for stress concentration.

  • PDF

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

A PHOTOELASTIC STUDY ON THE STRESS ANALYSIS UNDER MADIBULAR DISTAL-EXTENSION REMOVABLE PARTIAL DENTURE WITH DIFFERENT DESIGN OF THE MAJOR CONNECTOR (주 연결장치의 설계변화에 따른 하악 유리단 국소의치의 광탄성 응력 분석에 관한 연구)

  • Lee, Kyw-Chil;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.177-194
    • /
    • 1991
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a distal extension removable partial dentures with three kinds of mandibular major connectors, that is, lingual bar, linguoplate, and swing-lock attachment. A photoelastic model was made of the epoxy resin(PC-1) and hardener(PCH-1) and coated with plastic cement-1 (PC-1) at the lingual surface of the epoxy model and set with three kinds of chrome-cobalt removable partial dentures. A bilateral vertical load of 15kg to the middle portion of the metal bar crossing both the first molars of the right and the left, and a unilateral vertical load of 12.5kg to the right first molar were applied with the use of specially designed loading device and the reflective circular polariscope was used to analyze the photoelastic model under each condition. The following results were obtained : 1. When the bilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 2. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 3. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the termial abutment or adjacent teeth on the non-loaded side showed the least stress distribution in case of swing-lock attachment. 4. When the bilateral vertical load and the unilateral vertical load were applied the swing-lock attachment showed the mildest uniform stress distribution on the edentulous area and the alveolar bone around the abutment teeth.

  • PDF

Photoelastic Stress Analysis of the Abutment Surrounding Tissue According to Shape of the Proximal Plate of the RPI Clasp (압축하중시 RPI clasp의 3가지 다른 proximal plate 형태에 따른 지대치 주위조직의 광탄성 응력 분석)

  • Choi, Jung Soo;Kim, Busob
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution of the surrounding tissues according to 3 proximal plate types of the RPI clasp. Methods: The removeable partial denture which mandibular right and left second premolars and mandibular molars were lost was attached to a three dimensional photo elastic epoxy resin model. Then 120N of vertical load was applied. After 3-dimensional photoelastic stress analysis was used to record the isochromatic fringe patterns. Results: Kratochvil type guiding plane exhibited little uniform stress distribution on load center and alveolar ridge, but higher stress concentration on buccal surface of second premolar. Krol type guiding plane exhibited the stress concentration on the front of load center and relatively higher stress concentration on buccal surface of first premolar. However, this type had no effect on canine. Researcher type guiding plane showed the stress concentration on second premolar and molar, but the little stress distribution on first premolar. Conclusion: In all types, excessive stress concentration was appeared and three types were not significant different.

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN THE ALVEOLAR BONE BY VARIOUS MOLAR UPRIGHTING SPRINGS (Molar Uprighting Spring에 의해 발생되는 치조골내의 응력분포에 관한 광탄성학적 연구)

  • Choi, Jin-Hugh;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.21 no.2 s.34
    • /
    • pp.353-366
    • /
    • 1991
  • This study was performed to analyze the effects of forces to the alveolar bone by various molar uprighting spring such as helical uprighting spring. T-loop spring, Modified T-loop spring and open coil spring. The simplified two-dimensional photoelastic model was constructed with a lower left posterior quadrant containing the second molar, the first and second premolars and the canine, with the first molar missing. Several molar uprighting springs were fabricated from 0.017 by 0.022 inch blue Elgiloy and applied to the photoelastic model. Two-dimensional photoelastic stress analysis was performed, and the stress distribution was recorded by photography The results obtained were as follows; 1. In all the kinds of the springs, the center of rotation of the mandibular second molar was oserved at the apical 1/5-1/6 between the alveolar crest and the root apex. 2. In all the kinds of the spring, the stress induced in the mesial root surface of the mandibular second molar was relatively homogeneous but there was some difference in the magnitude of the stress. 3. In the kinds of the springs, the distal crown tipping moment of the second molar was increased in turn as open coil spring, helical uprighting spring, T-loop spring, and modified T-loop spring. 4. The largest extrusive force was occured in the T-loop spring, intrusive force was occured in Modified T-loop spring only, and the largest distal tipping force was occured in open coil spring. 5. In the T-loop spring with activation, the stress induced in the mesial root surface of the second molar was increased gradually from the root apex to the alveolar crest and highly concentrated in the alveolar crest.

  • PDF