• Title/Summary/Keyword: Photochemical method

Search Result 115, Processing Time 0.026 seconds

Estimate of Surface Ozone Concentration on Sunny Summer Days in Seoul Area by the Photochemical-Trajectory Model (광화학-궤적 모델에 의한 여름철 맑은 날 서울지방의 지상 오존 농도 추정)

  • 이시우;이광목
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.497-506
    • /
    • 2002
  • A Photochemical-Trajectory model was used to understand the production of ozone in the atmospheric boundary layer. This model was composed of the trajectory and the photochemical models. To calculate trajectories of air parcels, winds were obtained from the three-dimensional nonhydrostatic mesoscale model (PSU/NCAR MM5V2), and the results were interpolated into constant height surfaces. Numerical integration in the trajectory model was performed by the Runge-Kutta method. The photochemical model consisted of chemical reactions and photodissociation processes. Chemical equations were integrated by the semi-implicit Bulirsch-Stoer method. We performed our experiments from 21 July to 23 July 1994 during the summer time for Seoul area. During the time of maximum ozone concentration in Seoul, four trajectories of air parcels which traveled from Inchon to Seoul were selected. Ozone concentrations estimated by two models are compared with observed one in Seoul area and the photochemical-trajectory model is better fitted than pure photochemical model. During the selected period, high ozone concentrations in Seoul area were more influenced by transferred pollutants from Inchon than emitted pollutants in Seoul.

Technology Trend for Photochemical Hydrogen Production by the Patent Analysis (특허분석에 의한 광화학적 수소제조 기술동향)

  • Moon, Sang-Jin;Kang, Kyung-Seok;Han, Hye-Jeong;Baeg, Jin-Ook;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.197-206
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photochemical method, biological method, electrolysis and thermochemical method, etc. Many researches have been widely performed for the hydrogen production method having low production cost and high efficiency. In this paper, the patents concerning the photochemical hydrogen production method were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The patent application trend was analyzed by the years, countries, companies, and technologies.

Preconcentration and Detection of Herbicides in Water by Using the On-line SPE-HPLC System and Photochemical Reaction

  • 이승호;이성광;박영훈;김현주;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1165-1171
    • /
    • 1999
  • The analysis of trace herbicides using the on-line SPE-HPLC system and a photochemical reaction was studied. 18 compounds of herbicides including eight triazines, six phenoxy acids and esters, and four other herbicides were examined. The on-line SPE-HPLC system developed for selection of eluting solvent improved chromatographic efficiency. The recoveries of herbicides were higher than 77%. With 100 mL tap water samples, the detection limits for all analytes were in the 0.1-2.3×10-10 M range. Detection was done by a UV or fluorescence spectrometer after photochemical reaction at the end of the column with 2W or 450W mercury lamp. Without a photochemical reaction, all compounds responded to 230 nm UV detector, but phenoxy acids and esters were weakly detected. However, with a photochemical reaction, these compounds were selectively detected at 320 nm wavelength of UV absorption and 400 nm emission of the fluorescence detectors. This method can be used for the analysis of environmental water containing herbicides at trace levels.

Photochemical Kinetics of Maleic to Fumaric Acid on Silver Nanoparticle Surfaces

  • Jang, Nak-Han;Jeong, Dae-Hong;Suh, Jung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.791-794
    • /
    • 2005
  • A visible photochemistry of maleic to fumaric acid adsorbed on silver nanoparticle surfaces was investigated as probed by SERS using a simple flow method. Photoisomerization of maleic to fumaric acid was consecutively observed in the condition of various flow rates, which varied the exposure time of laser beam. The sequential SERS spectra of maleic acid indicated that the photochemical isomerization and desorption took place simultaneously on silver nanoparticle surfaces as a function of laser fluency and wavelength. For 530.9nm laser line excitation, the rate constant coefficients were obtained with a = 5.9 $sec^{-1}$ mW for isomerization and b = 13.9 $sec^{-1}$ mW for desorption, which $k_1\;=\;aI^n\;and\;k_2\;=\;bI^m$. Both reactions were one photon process (n = 1, m = 1) of a visible light and relatively fast process whose decay time was in the range of milli-second for 50 mW laser power. The rate of photochemical reaction increased on going toward the blue and photodesorption was a dominant process. A simple flow method used in this study was very useful to study a relatively fast photochemical reaction of molecules adsorbed on silver nanoparticle surfaces.

Use of Geographic Information System Tools for Improving Atmospheric Emission Inventories of Biogenic Source

  • Shin, Tae-joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.151-158
    • /
    • 1999
  • Biogenic source emissions refer to naturally occuring emissions from vegetation, microbial activities in soil, lightening, and so on. Vegetation is especially known to emit a considerable amout of volatile organic compounds into the atmosphere. Therefore, biogenic source emissions are an important input to photochemical air quality models. since most biogenic source emissions are calculated at the county-level, they should be geographically allocated to the computational grid cells of a photochemical air quality model prior to running the model. The traditional method for the spatial allocation for biogenic source emissions has been to use a "spatial surrogate indicator" such as a county area. In order to examine the applicability of such approximations, this study developed more detailed surrogate indicators to improve the spatial allocation method for biogenic source emissions. Due to the spatially variable nature of biogenic source emissions, Geographic Information Systems(GIS) were introduced as new tools to develop more detailed spatial surrogate indicators. Use of these newly developed spatial surrogate indicators for biogenic source emission allocation provides a better resolution than the standard spatial surrogate indicator.indicator.

  • PDF

Photochemical and Thermal Solvolysis of Picolyl Chlorides

  • Shim Sang Chul;Choi Seung Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.30-33
    • /
    • 1982
  • Photochemical and thermal solvolysis of 2,3,4-picolyl chlorides (2,3,4-PC) were studied in amine solvents and the results were correlated with the electronic structures calculated by PPP-SCF-MO CI method. Activation parameters show that the thermal solvolysis of PC is $S_N2$ type rcaction. The rates of thermal reaction in pyridine or t-butylamine solvent decrease in the order of 2-PC > 3-PC > 4-PC. These results are consistent with the predictions based on the electron densities of picolyl chlorides. In photosolvolysis, the same products as those of thermal reactions were obtained. The results indicate that photochemical solvolysis undergoes through heterolytic cleavage. Relative quantum yields of photosolvolysis of 2,3,4-picolyl chlorides in t-butylamine solvent were determined to be 0.73, 1, and 0.50 respectively. These results are in good agreement with the electron densities of the excited triplet state of picolyl chlorides.

The Effect of External Noise on Dynamic Behaviors of the Schlogl Model with the Second Order Transition for a Photochemical Reaction

  • 김경란;Lee, Dong J.;신국조
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1119-1121
    • /
    • 1995
  • The method for the Schlo"gl model with the first order transition is extended to the Scho;gl model with the second order transition for a photochemical reaction. We obtain the explicit results of the time-dependent average and the time correlation function at the unstable steady state of the model in the neighborhood of the Gaussian white noise and then discuss the effect of noise on the dynamic properties.

Use of Chlorophyll a Fluorescence Imaging for Photochemical Stress Assessment in Maize (Zea mays L.) Leaf under Hot Air Condition

  • Park, Jong Yong;Yoo, Sung Young;Kang, Hong Gyu;Kim, Tae Wan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity ($F_m$) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield ($F_v/F_m$) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity ($F_m$) and Maximum fluorescence value ($F_p$) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (${\Phi}PSII$). Thus, NPQ and ${\Phi}PSII$ were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.

Study on Surface-defect Passivation of InP System Quantum Dots by Photochemical Method (광화학적 방법을 통한 InP계 양자점 표면결함 부동태화 연구)

  • Kim, Doyeon;Park, Hyun-Su;Cho, Hye Mi;Kim, Bum-Sung;Kim, Woo-Byoung
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.489-493
    • /
    • 2017
  • In this study, the surface passivation process for InP-based quantum dots (QDs) is investigated. Surface coating is performed with poly(methylmethacrylate) (PMMA) and thioglycolic acid. The quantum yield (QY) of a PMMA-coated sample slightly increases by approximately 1.3% relative to that of the as-synthesized InP/ZnS QDs. The QYs of the uncoated and PMMA-coated samples drastically decrease after 16 days because of the high defect state density of the InP-based QDs. PMMA does not have a significant effect on the defect passivation. Thioglycolic acid is investigated in this study for the effective surface passivation of InP-based QDs. Surface passivation with thioglycolic acid is more effective than that with the PMMA coating, and the QY increases from 1.7% to 11.3%. ZnS formed on the surface of the InP QDs and S in thioglycolic acid show strong bonding property. Additionally, the QY is further increased up to 21.0% by the photochemical reaction. Electron-hole pairs are formed by light irradiation and lead to strong bonding between the inorganic and thioglycolic acid sulfur. The surface of the InP core QDs, which does not emit light, is passivated by the irradiated light and emits green light after the photochemical reaction.

Use of Geographic Information System Tools for Improving Mobile Source Atrmospheric Emission Inventories

  • Shin, Tae-joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.143-150
    • /
    • 1999
  • Mobile source emissions are important inputs to photochemical air quality models. Since most mobile source emissions are calculated at the county-level, these emission should be geographically allocated to the computational grid cells of a photochemical air quality model prior to running the model. The traditional method for the spatial allocation of these emissions has been to use a "spatial surrogate indicator" such as population, since grid-specific emission calculations are very labor-intensive and expensive, plus the necessary data are often not available for such grid resolutions. Accordingly, new spatial surrogate indicators for mobile source emissions(specifically for highway emissions) were developed using Geographic Information Systems(GIS) tools due to the spatially variable nature of mobile source emissions. These newly developed spatial surrogate indicators appear to be more appropriate for the allocation of highway emissions than the population surrogate indicator. It was also revealed that the conventional spatial allocation method underestimates the maximum levels of air pollutant emmissions.mmissions.

  • PDF