
Dynamic Behavior 0/ the Schlogl Model with the Second Order Transition Bull. Korean Chem. Soc. 1995, V시. 16, No. 11 1119

The Effect of External Noise on Dynamic Behaviors 
of the Schlogl Model with the Second Order 

Transition for a Photochemical Reaction

Kyoung-Ran Kim, Dong J. Lee, and Kook Joe Shin*

Department of Chemistry, National Fisheries University of Pusan, Pusan 608-737, Korea

^Department of Chemistry and Center for Molecular Catalysis, Seoul National University, Seoul 151-742, Korea

Received August 9, 1995

The method for the Schlogl model with the first order transition is extended to the Schlogl model with the second 

order trans辻ion for a photochemical reaction. We obtain the explicit results of the time-dependent average and the 

time correlation function at the unstable steady state of the model in the neighborhood of the Gaussian white noise 

and then discuss the effect of noise on the dynamic properties.

Introduction

In the preceding paper1 we have investigated the effect 

of external noise on the dynamic behaviors in the Schlogl 

model with the first order transition for a photochemical 

reaction. Then, we have in detail discussed the effect of the 

external fluctuating light intensity on the stability of the 

steady states in the neighborhood of the Gaussian white 

noise by obtaining the explicit results of the time-dependent 

variance and the time correlation function with the aid of 

approximate results based on the stationary properties of 

the system. The main results are:

(1) . The noise strength decreases the correlation time be­

tween the fluctuating macroscopic variables when the system 

is at the stable steady state. It has no effect on the stability 

of the system.

(2) . The time correlation function directly shows that the 

external noise stabilizes the unstable steady state.

In this work, the method presented in the preceding paper 

is extended to the Schlogl model with the second order tran­

sition2 for a photochemical reaction at the unstable steady 

state.

Theory

The Schlogl mod이 with the second order transition may 

be written as

4+X 爵 2X+B, X쓰C (1)

where 妇 and k_\ are the rate constants, A is the reactant 

and B and C denote the products. The rate equation for 

the concentration of the intermediate X is given by the fol­

lowing equation with the concentrations of A and B being 

h시d constants

씅 = ~^2+Y^-Al-exp-aX); 丫=£备, 

블, t=妃](2)

In Eq. (2), X denotes the concentration of the intermediate; 

r is the real time; L is the incident light intensity and a 

is the absorption coefficient times the sample thickness. Let 

Xs and Is be the values of X and Z at a steady state. When 

Is>y/a, there exists only one stable steady state, X$ = 0. In 

the case of Is<y/a, there are two steady states, that is, X$=0 

and y~als correspond to the unstable and stable steady sta­

tes, respectively. Assuming that the light intensity satisfies 

the Ornstein-Uhlenbeck process and following the same pro­

cedure as in ref. 1, the fluctuating part x—X—Xs~Xt which 

is the deviation from the unstable steady state due to the 

external fluctuating light intensity, satisfies the following Fo­

kker-Planck equation in the neighborhood of the Gaussian 

white noise1,3'4

오 F(x,t) = [—£/(r) + y^ g«)오 旭)]F心), (3)L (jX 厶 qX qX

where o is the strength of noise; e2(«l) is the inverse of 

the correlation time between the fluctuating intensities. The 

functions _々)，gCr), and are defined as

^(r)=exp(-ar)-l(

A(r) =g(幻 一 泌G (4)

The stationary probability distribution at the unstable 

steady state is obtained, by including the e2 term, as

R(x)=F시#){1一事|号(Y—히$)危+-븚云«3厶一尤)까; ⑸

p(q =--- --------- - 의외 . r = .2(厂 a&L
05W (空)±、(±8) 拓2' ° a2a2(‘6) 

where the perturbed term in Eq. (5) should be less than 

1; T(± p/2) is the gamma function and the upper and lower 

signs± represent the case of x^O and x<0, respectively. The 

regions of and correspond to the cases of Is>y/a 

and Zs<y/a, respectively? As already mentioned, Is>y/a is 

the necessary condition that the unstable steady state exists. 

Thus, from now on the case of x>0 is only discussed. The 

dependence of the stationary probability distribution on the 

light intensity and noise strength is shown in Figure la. 

The figure shows that the parameters affect the state of the
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Hgure 1. (a) The stationary probability distribution of Eq. (6). 

The heavy dotted, heavy solid and heavy dashed lines denote 

the distribution of 0=L47, 1 and 0.84, respectively. The values 

of parameters, when 8=1.47, are 丫=2, a=0.3, L=5.5 and g= 
2.3. In 난le case of 8=1, y=2, a=0.5t 厶느3 and o=2. When 

8 = 0.84, 丫 = 2, a = 0.3,厶= 6.0 and o=2.3. (b) The dependence 

of the probability distributions on the parameter, £. The heavy 

and light lines denote e = 0 and 031, respectively. The lines of 

e=0.10 correspond to those of e=0. The values of other para­

meters are the same as in Figure la.

system profoundly. When p>l, the probability distribution 

is a distribution with the maximum at x— — y—aZs —a2a2/2. 

The maximal peak shows that the deterministic stable steady 

아ate is shifted to y—a4—a2n2/2 due to the external noise. 

When P=1 and <1, the distribution is a gamma distribution 

and a delta-like distribution, respectively. As shown in Figure 

lb, the distribution of e=0.1 completely agrees with that 

of £=0. When e=0.31, it slightly deviates from that of e=0. 

Thus, when e<1, the term including s2 may be neglected. 

The average and nth order moments are

<x〉$=魂成汕=丫-以, (7a)

»-l a202
<***〉$= II G+应一5—X. if n is an positive integer. (7b) 

i = 0 L

t

Figure 2. The dependence of G(t)〉on the parameter, £. The 

solid, dashed and heavy solid lines represent e = 0, 0.10 and 0.31, 

respectively. The values of other parameters are y = 2, a = 0.3, 

4 = 3, <x(0)) = 0.01 and a = 2.3.

The time correlation function may be expressed as1

으 G(Z) = (y-aZs)G(0- Wx(0)>. (8)

Using the following elation

<x(/)2x(0)> = 2<r(/)>G(0, (9)

the correlation function is written as

—GW = E(y-aZ5)-2<x(0>]G(/). (10)

With the aid of Eq. (3) G。)〉satisfies

% )〉= — (1+0.5E2a2o2)<x(/)2> + (丫 一 a厶 + 0.5a2o2)<x(0> .(11)

Using the following relation based on Eq. (7b)

"〉= <如〉郷〉+ 으尹], (12)

we have

을 G(f)〉= [ — (1 + 0.5£2a2o2)<x(Z)) + (y-aZs

+ 0.25£2a2o2)]<x(0>. (13)

The solution of Eq. (13) is

〈双》=G(0)〉(Y—als — O.25e2a202) exp(y — aZs~0.25e2a2o2)/

X {y - a厶—0.25£2a2o2 — <x(0)> (1 + 0.5#(而勺
XEl — exp(y—a/s—0.25e2a2o2)fl} -1 (14)

The dependence of G。)〉on the parameter is shown in Fig.

2. The figure shows that for small £, the results agree well 

with the case of the Gaussian white limit. For the 

result approaches the value

lim % Y—c(4 ~ 0.75c2a2a2. (15)

When y—cJs>£2a2o2r the result corresponds to that given
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Figure 3. The time correlation function. The solid, dashed and 

heavy solid lines represent e = 0, 0.10 and 0.31, respectively. The 

solid and dashed curves completely coincide with each other. 

The values of the parameters are the same as in Figure 2.

in Eq. (7a). Let us consider the deterministic rate to show 

that the above result of Eq. (14) is quite reasonable.

~으 x(t) = (丫 一 aZs>(0 (16)

The solution is

m = 尤(0)(Y—c旳 exp(Y-aL)‘ fin

y 一 aL -*(0)[ 1 — exp(y 一 alM '

Neglecting the noise term, Eq. (14) reduces to Eq. (17)t since 

the present stochastic process is based on the deterministic 

r 가 e.

Substituting Eq. (14) into Eq. (10), we have

G(t)=G(0) F(t) exp(丫一 a/% (18)

where

F(t) = (丫 一 als - O.25e2a202)2

X {y—a/s — — <x(0) > (1+0.5e2a2a2)

X [ 1 — exp(y — aZj — O^SeWa2)^} 2 (19) 

An example of the time corr이ation function is given in Fig.

3. The example shows that for small e the correlation func­

tions correspond to that in the limit After long time, 

the function becomes, neglecting the perturbed term,

exp-Cr-a^X (20)

The results given in Eqs. (18) and (20) show that the non­

linear term stabilizes the unstable steady state.

Discussion

We have obtained the time correlation function in the 

Schlogl model with the second order transition at the unsta­

ble steady state. Let us remark some important points;

(1) . The external noise strength severely affects the sta­

tionary probability distribution of the present model, as in 

the previous Schlogl model?

(2) . While the noise strength is quite important in the 

stabilization of the unstable steady state for the previous 

Schlogl model,1 its effect on the present model can be ne­

glected near the Gaussian white noise limit.
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