• 제목/요약/키워드: Photo-Fenton

검색결과 42건 처리시간 0.023초

Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구 (Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction)

  • 김민경;공성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권6호
    • /
    • pp.69-75
    • /
    • 2006
  • 지하 저장 탱크로부터의 유류 유출로 인하여 전세계적으로 넓은 지역의 토양 및 지하수가 오염되고 있다. Methyl tert-butyl ether(MTBE)는 대기 오염 감소를 위하여 널리 사용되고 있는 유류 첨가제이지만 토양 및 지하수로 유입되어 섭취 되었을 때 발암 가능성이 있는 유독 물질이다. 본 연구는 고도 산화 처리 기법 중 유기 오염물의 분해에 높은 효율을 나타내는 고전적 Fenton reaction의 최대 단점인 강한 산성(pH 2.5-3) 의존성을 극복한 새로운 산화 처리 기법을 개발하여 고농도의 MTBE를 효과적으로 분해 하는 것을 그 목적으로 하여 자연 친화적인 chelating agents를 사용하여 중성 영역에서 Fenton reaction을 가능하게 하는 기법인 Modified Fenton reaction과 Ultra Violet light(UV)를 이용하여 분해효율을 극대화 하는 Photo-assisted Fenton reaction을 응용한 Modified Photo-Fenton reaction system을 개발하여 최적 반응 조건 및 반응 차수, 반응 메커니즘을 밝혀내었다. 낮은 독성과 높은 생분해성을 나타낸 Citrate ion을 chelating agents로 선정하였으며 최적 반응 조건은 [$Fe^{3+}$] : [Citrate] = 1 mM : 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, 초기 pH 6.0이며 이 조건에서 1000 ppm MTBE를 분해한 결과 6시간 후 86.75%, 16시간 후 99.99%의 높은 분해율을 나타냈으며 최종 pH는 6.02로 안정적이었다. 또한 Modified Photo-Fenton reaction을 이용한 MTBE 분해 반응은 유사 1차 반응을 나타내었으며 methoxy group이 ${\cdot}OH$ radical과 주로 반응하여 tert-butyl formate(TBF)가 주요 분해 산물이 되는 분해 경로를 따른 다는 것이 밝혀졌다. 본 연구로 개발된 Modified Photo-Fenton reaction에서 발생되는 산화제인 ${\cdot}OH$ radical의 비선택적 반응성을 고려할 때 본 system은 다른 종류의 유기 오염물 분해에도 효과적일 것으로 판단된다.

Rational design of rare-earth orthoferrite LnFeO3 via Ln variation towards high photo-Fenton degradation of organics

  • Thi T. N. Phan;Aleksandar N. Nikoloski;Parisa A. Bahri;Dan Li
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.41-52
    • /
    • 2024
  • In this study, rare-earth orthoferrites LnFeO3 were synthesized using a facile hydrothermal reaction and their visible-light-induced photo-Fenton degradation of organics was optimized through Ln variation (Ln = La, Pr, or Gd). The morphological, structural, and chemical characteristics of as-prepared samples were examined in detail by using different methods, including XRD, SEM, TEM, XPS, etc. On the other side, under visible light illumination, the photo-Fenton-like catalytic activities of LnFeO3 were assessed in terms of the removal of selected organic models, i.e., pharmaceuticals (ketoprofen and tetracycline) and dyes (rhodamine B and methyl orange). As compared with PrFeO3 or GdFeO3, the sample of LaFeO3 displayed more structural distortion, larger specific surface area, and narrower band gap, resulting in its higher photo-Fenton-like catalytic activity toward the degradation of organics. In organic-containing solution, in which the initial solution pH = 5, catalyst dosage = 1 g/L and H2O2 concentration = 10 mM, 98.2% of rhodamine B, 31.1% of methyl orange, 67.7% of ketoprofen, or 96.4% of tetracycline was removed after 90-min exposure to simulated visible light. Our findings revealed that variation of Ln site on rare-earth orthoferrites was an effective strategy for optimizing their organic removal via visible-light-induced photo-Fenton reaction.

고급산화공정에 의한 안료폐수 처리: 비교 연구 (Degradation of Dye Wastewater by Advanced Oxidation Process: A Comparative Study)

  • 박영식
    • 한국환경과학회지
    • /
    • 제15권1호
    • /
    • pp.67-75
    • /
    • 2006
  • The degradation of Rhodamine B (RhB) in water was investigated in laboratory-scale experiments, using five advanced oxidation Processes (AOPs) $UV/H_2O_2$, lenten, photo-lenten, $UV/TiO_2,\;UV/TiO_2/H_2O_2$. The photodegradation experiments were carried out in a fluidized bed photoreactor equipped with an immersed 32 W UV-C lamp as light source. initial decolorization rate and COD removal efficiency were evaluated and compared. The results obtained showed that the initial decolorization rate constant was quite different for each oxidation process. The relative order of decolorization was: photo-fenton > $UV/TiO_2/H_2O_2$ > fenton > $UV/H_2O_2$ > $UV/TiO_2$ > UV > $H_2O_2$. The relative order of COD removal was different from decolorization: photo-fenten ${\fallingdotseq}$ $UV/TiO_2/H_2O_2\;>\;UV/TiO_2\;>\;fenton\;>\;UV/H_2O_2$. The Photo-lenten and $UV/TiO_2/H_2O_2$ processes seem to be appropriate for decolorization and COD removal of dye wastewater.

Artificial Radical Generating and Scavenging Systems: Synthesis and Utilization of Photo-Fenton Regent in Biological Systems

  • Matsugo, Seiichi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.138-141
    • /
    • 2002
  • A photo-labile compound which is bioinactive but, upon irradiation with light, yields bioactive species is called as "caged compound". Photolysis of caged compounds generating bioactive species, has become a general method to produce a desired amounts of bioactive species in the specific time interval at the desired place or area of the target biological systems. For this purpose, we designed and synthesized caged hydroxyl radical., "Photo-Fenton Reagent" NP-IIl. NP-IIl has a strong absorption maximum at 377 nm and yields hydroxyl radicals upon UV light irradiation. The antioxidant activity of the ${\alpha}$ -lipoic acid and other naturally occurring compounds has been examined by using NP-IIl as a molecular probe. For example, upon photoirradiation of NP-lII with BSA or apolipoprotein of human low density (LDL), the significant oxidative modifications were observed in both cases. The oxidation was completely suppressed in the presence of ${\alpha}$-lipoic acid, which clearly demonstrates the strong hydroxyl radical scavenging activity of ${\alpha}$-lipoic acid. Other applications of NP-lII will also be described

  • PDF

Characterization of Methylene Blue Decomposition on Fe-ACF/TiO2 Photocatalysts Under UV Irradiation with or Without H2O2

  • Zhang, Kan;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.481-487
    • /
    • 2009
  • The photocatalysts of Fe-ACF/$TiO_2$ compositeswere prepared by the sol-gel method and characterized by BET, XRD, SEM, and EDX. It showed that the BET surface area was related to adsorption capacity for each composite. The SEM results showed that ferric compound and titanium dioxide were distributed on the surfaces of ACF. The XRD results showed that Fe-ACF/$TiO_2$ composite only contained an anatase structure with a Fe mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in Fe-ACF/$TiO_2$ composites. From the photocataytic degradation effect, $TiO_2$ on activated carbon fiber surface modified with Fe (Fe-ACF/$TiO_2$) could work in the photo-Fenton process. It was revealed that the photo-Fenton reaction gives considerable photocatalytic ability for the decomposition of methylene blue (MB) compared to non-treated ACF/$TiO_2$, and the photo-Fenton reaction was improved by the addition of $H_2O_2$. It was proved that the decomposition of MB under UV (365 nm) irradiation in the presence of $H_2O_2$ predominantly accelerated the oxidation of $Fe^{2+}$ to $Fe^{3+}$ and produced a high concentration of OH radicals.

Studies on decomposition behavior of oxalic acid waste by UVC photo-Fenton advanced oxidation process

  • Kim, Jin-Hee;Lee, Hyun-Kyu;Park, Yoon-Ji;Lee, Sae-Binna;Choi, Sang-June;Oh, Wonzin;Kim, Hak-Soo;Kim, Cho-Rong;Kim, Ki-Chul;Seo, Bum-Chul
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1957-1963
    • /
    • 2019
  • A UVC photo-Fenton advanced oxidation process (AOP) was studied to develop a process for the decomposition of oxalic acid waste generated in the chemical decontamination of nuclear power plants. The oxalate decomposition behavior was investigated by using a UVC photo-Fenton reactor system with a recirculation tank. The effects of the three operational variables-UVC irradiation, H2O2 and Fenton reagent-on the oxalate decomposition behavior were experimentally studied, and the behavior of the decomposition product, CO2, was observed. UVC irradiation of oxalate resulted in vigorous CO2 bubbling, and the irradiation dose was thought to be a rate-determining variable. Based on the above results, the oxalate decomposition kinetics were investigated from the viewpoint of radical formation, propagation, and termination reactions. The proposed UVC irradiation density model, expressed by the first-order reaction of oxalate with the same amount of H2O2 consumption, satisfactorily predicted the oxalate decomposition behavior, irrespective of the circulate rate in the reactor system within the experimental range.

Enhanced photo-Fenton degradation of tetracycline using TiO2-coated α-Fe2O3 core-shell heterojunction

  • Zheng, Xiaogang;Fu, Wendi;Kang, Fuyan;Peng, Hao;Wen, Jing
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.14-23
    • /
    • 2018
  • $TiO_2-coated$ cubic ${\alpha}-Fe_2O_3$ with mostly exposed (012) and (101) facets (${\alpha}-Fe_2O_3@TiO_2$) was fabricated using a hydrothermal route for the photo-Fenton degradation of tetracycline under visible light irradiation. $TiO_2$ coating could greatly affect the photocatalytic activity of ${\alpha}-Fe_2O_3@TiO_2$. Compared with cubic ${\alpha}-Fe_2O_3$ alone for photodegradation of tetracycline, ${\alpha}-Fe_2O_3@TiO_2$ with $TiO_2$ shell of around 15 nm exhibited higher removal efficiency of tetracycline in photo-Fenton system, and its durability was slightly affected after five cycle times under same conditions. It is ascribed to the well-matched interface between cubic ${\alpha}-Fe_2O_3$ core and $TiO_2$ shell, leading to the broadened light-absorption and the efficient separation of photo-generated electon-hole pairs. The $^{\bullet}OH$ radicals were main responsible for the advanced photocatalytic performance of ${\alpha}-Fe_2O_3@TiO_2$ in visible-light driven degradation of tetracycline.

Improved Photo Degradation of Rhodamine B Dye using Iron Oxide/Carbon Nanocomposite by Photo-Fenton Reaction

  • Kim, Min-Il;Im, Ji-Sun;In, Se-Jin;Kim, Hyuk;Kim, Jong-Gyu;Lee, Young-Seak
    • Carbon letters
    • /
    • 제9권3호
    • /
    • pp.195-199
    • /
    • 2008
  • A nanocomposite consisting of $Fe_3O_4$ and MWCNT was produced via sol-gel technique using $FeCl_3$ along with MWCNT by calcination at $300^{\circ}C$. The degradation effect of rhodamine B dye has been investigated under UV illumination in a darkroom. The degradation reaction was studied by monitoring the discoloration of dye as a function of irradiation time using UV-visible spectrophotometeric technique. The $Fe_3O_4$-MWCNT samples have continuous degradation ability under the UV illumination with the first order kinetics and the dye removal was better than in the pristine $Fe_3O_4$. The resultant composite catalyst was found to be efficient for the photo-Fenton reaction of the dye.

Photo or Solar Ferrioxalate Disinfection Technology without External Hydrogen Peroxide Supply

  • Cho, Min;Jeong, Joon-Seon;Kim, Jae-Eun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.238-243
    • /
    • 2007
  • The Fenton reaction, which refers to the reaction between ferrous ions and hydrogen peroxide to produce the OH radical, has not been widely applied to the disinfection of microorganisms despite being economic and environmentally friendly. Cho et al. have previously proposed the neutral photo ferrioxalate system as a solution to the problems posed by the Fenton reaction in acidic conditions, but this system still requires an external hydrogen peroxide supply. In the present study, we developed a simple disinfection technology using the photo or solar ferrioxalate reaction without the need for an external hydrogen peroxide supply. E. coli was employed as the indicating microorganism. The study results demonstrated the effectiveness of the photo ferrioxalate system in inactivating E. coli without any external hydrogen peroxide supply, as long as dissolved oxygen is supplied. Furthermore, the solar ferrioxalate system achieved faster inactivation of E. coli than an artificial light source at similar irradiance.

Fe-ACF/$TiO_2$ 복합체의 특성과 MB용액의 분해에서 포토-펜톤 효과 (Characterization of Fe-ACF/$TiO_2$ composite Photocatalysts Effect Via Degradation of MB Solution)

  • 장간;맹칙달;고원배;오원춘
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.290-298
    • /
    • 2009
  • 본 논문에서 Fe-활성탄소 섬유(ACF)/$TiO_2$ 복합체 광촉매를 졸-겔 방법에 의하여 제조하였다. 합성된 광촉매는 UV조사하에서 MB용액의 광분해에 사용되었다. BET 데이터는 Fe와 Ti의 여러 가지 농도를 가지고 처리된 ACF의 표면에서 흡착 특성을 보여준다. SEM 사진에서 보여지는 것처럼, 철 혼합물과 $TiO_2$는 ACF 표면에 활착되어 있음을 나타내었다. X선 분말 회절법으로부터 얻어진 결과는 복합체로부터 FeO+$TiO_2$, Anatase 및 Rutile 구조의 결정상을 나타내었다. 원소분석을 위한 EDX spectra는 Fe와 함께 C, O, Ti의 peak들이 존재함을 나타내었다. MB 분해에 대한 활성은 $TiO_2$의 광분해와 Fe의 photo-Fenton 효과로 인해 전자/hole쌍 반응으로부터 파생된 -OH 라디칼들에 의한 것으로 여겨진다.