• Title/Summary/Keyword: Photo-Degradation

Search Result 193, Processing Time 0.024 seconds

Inhibitory Effects of a Combination of Grapefruit and Rosemary Extracts for Alleviating UV-Induced Skin Ageing

  • Choi, Hee-Jeong;Alam, Badrul;Zhao, Peijun;Cha, Yeong-Ho;Kim, Tae-Ho;Lee, Sang-Han
    • Korean Journal of Plant Resources
    • /
    • v.32 no.3
    • /
    • pp.207-219
    • /
    • 2019
  • Ultraviolet (UV) radiation is associated with the development of extrinsic skin aging. We performed in vivo assays in order to investigate the protective effect of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-induced skin aging. The results indicated that cG&Re displayed elastase inhibitory activity in a dose-dependent manner. Topical application of cG&Re mitigated photo-aging related lesions such as skin erythema and thickening in photo-aged BALB/c mice dorsal skin, by preventing UVB-induced collagen degradation. Immunohistochemical analyses revealed that cG&Re stimulated SIRT-1 expression, and suppressed MMP-1 and $IL-1{\beta}$ expression. It was observed that expression of MMP-1 and -13 mRNA was downregulated in the cG&Re-treated group. Furthermore, cG&Re treatment drastically suppressed protein expression of MMP-1 and regulated the phosphorylation of p-38 kinase. As expected, oral administration of cG&Re resulted in the same SIRT-1, MMP-1, and $IL-1{\beta}$ expression patterns observed upon topical application of cG&Re in the UV-induced mice model. Overall, the current results demonstrated that cG&Re attenuated both the downregulation of MMP-1 expression and up-regulation of SIRT-1 expression, as well as decreased phosphorylation of MAPK in UVB-induced skin ageing mice model, suggesting that cG&Re might be used as an internal food ingredient for beauty-purposes as well as a functional food material.

Effect of Heat and Moisture on the Phase Transition in Dimethylammonium-Facilitated CsPbI3 Perovskite (다이메틸암모늄 유도 CsPbI3 페로브스카이트 상의 상전이 거동에 대한 열과 수분의 영향)

  • Sohyun Kang;Seungmin Lee;Jun Hong Noh
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.344-351
    • /
    • 2023
  • Cesium lead iodide (CsPbI3) with a bandgap of ~1.7 eV is an attractive material for use as a wide-gap perovskite in tandem perovskite solar cells due to its single halide component, which is capable of inhibiting halide segregation. However, phase transition into a photo inactive δ-CsPbI3 at room temperature significantly hinders performance and stability. Thus, maintaining the photo-active phase is a key challenge because it determines the reliability of the tandem device. The dimethylammonium (DMA)-facilitated CsPbI3, widely used to fabricate CsPbI3, exhibits different phase transition behaviors than pure CsPbI3. Here, we experimentally investigated the phase behavior of DMA-facilitated CsPbI3 when exposed to external factors, such as heat and moisture. In DMA-facilitated CsPbI3 films, the phase transition involving degradation was observed to begin at a temperature of 150 ℃ and a relative humidity of 65 %, which is presumed to be related to the sublimation of DMA. Forming a closed system to inhibit the sublimation of DMA significantly improved the phase transition under the same conditions. These results indicate that management of DMA is a crucial factor in maintaining the photo-active phase and implies that when employing DMA designs are necessary to ensure phase stability in DMA-facilitated CsPbI3 devices.

Photo-crosslinked gelatin methacryloyl hydrogel strengthened with calcium phosphate-based nanoparticles for early healing of rabbit calvarial defects

  • Da-Na Lee;Jin-Young Park;Young-Wook Seo;Xiang Jin;Jongmin Hong;Amitava Bhattacharyya;Insup Noh;Seong-Ho Choi
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.321-335
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the efficacy of photo-crosslinked gelatin methacryloyl (GelMa) hydrogel containing calcium phosphate nanoparticles (CNp) when applying different fabrication methods for bone regeneration. Methods: Four circular defects were created in the calvaria of 10 rabbits. Each defect was randomly allocated to the following study groups: 1) the sham control group, 2) the GelMa group (defect filled with crosslinked GelMa hydrogel), 3) the CNp-GelMa group (GelMa hydrogel crosslinked with nanoparticles), and 4) the CNp+GelMa group (crosslinked GelMa loaded with nanoparticles). At 2, 4, and 8 weeks, samples were harvested, and histological and micro-computed tomography analyses were performed. Results: Histomorphometric analysis showed that the CNp-GelMa and CNp+GelMa groups at 2 weeks had significantly greater total augmented areas than the control group (P<0.05). The greatest new bone area was observed in the CNp-GelMa group, but without statistical significance (P>0.05). Crosslinked GelMa hydrogel with nanoparticles exhibited good biocompatibility with a minimal inflammatory reaction. Conclusions: There was no difference in the efficacy of bone regeneration according to the synthesized method of photo-crosslinked GelMa hydrogel with nanoparticles. However, these materials could remain within a bone defect up to 2 weeks and showed good biocompatibility with little inflammatory response. Further improvement in mechanical properties and resistance to enzymatic degradation would be needed for the clinical application.

Characteristics of Phenol Degradation by using UV/TiO2 Photocatalysis (UV/TiO2 광촉매반응에 의한 페놀의 분해 특성)

  • Shin, In-Soo;Choi, Bong-long;Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.488-493
    • /
    • 2004
  • The effects were examined from several conditions of $TiO_2$ photocatalysis reaction to phenols degradation by changing it's reacting conditions such as phenol concentration, pH, $TiO_2$ concentration, $H_2O_2$ concentration, flow rate, and intensity of ultraviolet rays. Phenol degradation was more efficient in low concentration of phenol, neutral pH. Phenol degradation appeared to increase as concentration of $TiO_2$ photocatalyst, that of $H_2O_2$ and intensity of ultraviolet rays increased. As $TiO_2$ dosage increased, initial rate constant k linearly increased. When $H_2O_2$ was injected more than optimum, phenol removal rate didn't increase in proportional to the change of $H_2O_2$ concentration as OH radicals was being consumed. When flow rate is less than $4.75m^3/m^2$ day, phenol removal efficiency appeared to decrease as ultraviolet rays transmission rate becomes low by $TiO_2$ suspension coated in photo reaction column. Meanwhile, initial rate constant according to light intensity change in less than $25mW/cm^2$ appeared to be in proportion to light intensity ($mW/cm^2$) Removal efficiency decreased about 12% after 180 minutes of reaction time while showed stable removal efficiency of 100% after 300 minutes when using regenerated $TiO_2$.

Photodegradation of Safranin-O Dye by Au Metal Colloid in Cosmetics (화장품에서 금 콜로이드 입자에 의한 사프라닌 염료의 분해 연구)

  • Han, Moon-Suk;Lee, Yong-Geun;Lee, Young-Ho;Kim, Dae-Wook;Oh, Seong-Geun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2008
  • In this study, the photocatalysed degradation of safranin-O was investigated using Au colloids. Au metal nanoparticle wasused to eliminate safranin-O fast in solution. Au nanoparticles were prepared reduction method using $Na_2CO_3$ and PVP in aqueous solution. The degradation of safranin-O was examined using a variety of condition such as concentration of Au colloid or Au salt, reaction pH, and reaction time in the presence of UV light and $H_2O_2$. As the concentration of Au colloid increases, the rate of dye degradation increases. The photo-oxidation of the safranin-O was monitored spectrophotometrically. The properties of Au nanoparticles were characterized by UV-Vis spectroscopy. In addition, catalytic capacities of Au nanoparticles were also determined by UV-Vis spectroscopy.

Studies on Photocatalytic Thin Films($TiO_2$, TiO-N) Manufactured by DC Magnetron Sputtering Method and it's Characteristics for Removal of Pollutants (DC 마그네트론 스퍼터링법을 이용한 광촉매박막($TiO_2$, TiO-N)제조 및 오염물질 제거에 관한 연구)

  • Jeong, Weon-Sang;Park, Sang-Weon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • [ $TiO_2$ ] was deposited by DC magnetron sputtering on glass surface under various sputtering parameters such as discharge power($0.6{\sim}5.2\;kW$, substrate temperature($R.T{\sim}350^{\circ}C$), Ar and $O_2$ flow ratio with $0{\sim}50\;sccm$($Ar+O_2$ 90 sccm) and about 1 mtorr of pressure. TiO-N thin film was prepared under same sputtering conditions for $TiO_2$ thin film except flow ratio($Ar+O_2+N_2$ 90 sccm). The sheet resistance of thin films deposited under these parameters was measured to analyze electronic characteristic and thin film's thickness(${\alpha}$-step), surface roughness(AFM) and formation construction(FE-SEM, XRD) were also measured to draw optimal sputtering parameters. In order to evaluate photo-activity of thin film($TiO_2$, TiO-N) made in optimal parameters for removal of pollutants, toluene among VOCs and Suncion Yellow among reactive dyes were chosen to probe organic compounds for photo-degradation. It was shown that the photo-catalytic thin films had a significant photo-activation for the chosen contaminants and especially TiO-N thin film showed maximum efficiency of 33% for toluene(5 ppm) removal in visible-light range.

Photocatalytic Degradation of Fungicide Chlorothalonil by Mesoporous Titanium Oxo-Phosphate (Mesoporous Titanium Oxo-Phosphate에 의한 살균제 Chlorothalonil의 광분해)

  • Choi, Choong-Lyeal;Kim, Byung-Ha;Lee, Byung-Mook;Choi, Jyung;Rhee, In-Koo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.284-289
    • /
    • 2003
  • Titanium mesoporous materials have received increasing attention as a new photocatalyst in the field for photocatalytic degradation of organic compounds. The photocatalytic degradation of chlorothalonil by mesoporous titanium oxo-phoswhate (Ti-MCM) was investigated in aqueous suspension for comparison with $TiO_2$, (Degussa, P25) using as an effective photocatalyst of organic pollutants. Mesoporous form of titanium Phosphate has been prepared by reaction of sulfuric acid and titanium isopropoxide in the presence or n-hexadecyltrimethylammonium bromide. The XRD patterns of Ti-MCM are hexagonal phases with d-spacings of 4.1 nm. Its adsorption isotherm for chlorothalonil reached at reaction equilibrium within 60 min under dark condition with 28% degradation efficiency. The degradation ratio of chlorothalonil after 9 hours under the UV radiation condition (254 nm) exhibited 100% by Ti-MCM and 88% by $TiO_2$. However, these degradation kinetics in static state showed a slow tendency compared to that of stirred state because of a low contact between titanium matrices and chlorothalonil. Also, degradation efficiency of chlorothalonil was increased with decreasing initial concentration and with increasing pH of solution. As results of this study, it was clear that mesoporous titanium oxo-phosphate with high surface area and crystallinity could be used to photo- catalytic degradation of various organic pollutants.

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao;Ren, Qi-Fang;Jin, Zhen;Ding, Yi;Liu, Xin-Yu;Ni, Xi-Hui;Han, Meng-Li;Ma, Shi-Yu;Ye, Qing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.383-392
    • /
    • 2020
  • In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.

Synthesis and Characterization of Fe-containing AC/TiO2 Composites and Their Photodegradation Effect for the Piggery Waste

  • Oh, Won-Chun
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • In this present study, we have synthesized Fe-containing AC(activated carbon)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as a titanium source to Fe treated AC through an impregnation method. The result of the textural surface properties demonstrates that there is a slight decrease in the BET surface area of composite samples with an increase of the amount of Fe treated. The surface properties of scanning electron microscope (SEM) presented a characterization of a porous texture on the Fe-containing AC/$TiO_2$ composites and homogenous compositions for Fe and titanium dioxide distributed on the sample surfaces. Fe compound peaks and a titanium dioxide structure were observed in the X-ray diffraction patterns for the Fe-containing AC/$TiO_2$ composites. The results of chemical elemental composition for the Fe-containing AC/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated Fe components and Ti metal than that of any other elements. From the photo degradation results for the piggery waste, the Fe-containing AC/$TiO_2$ composites showed an excellent degradation activity for the chemical oxygen demand (COD) due to a photocatalysis of the supported $TiO_2$, radical reaction by Fe species and the adsorptivity and absorptivity of porous carbon.

Effects of Calcination Temperature on Ti02 Photocatalytic Activities (TiO2 광촉매 활성에서 소성온도의 영향)

  • Kim Seung-Min;Yun Tae-Kwan;Hong Dae-Ii
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.889-896
    • /
    • 2005
  • The nanosized $TiO_2$ photocatalysts were prepared by the hydrolysis of $TiCl_4$ and calcined at different temperatures. The resulting materials were characterized by TGA, DSC, XRD, and TEM testing techniques. XRD, TEM, and BET measurements indicated that the particle size of $TiO_2$ was increased with rise of calcination temperature and surface area was decreased with rise of it. The prepared $TiO_2$ photocatalysts were used for the photocatalytic degradation of congo red. The effects of calcination temperature, $TiO_2$ loading, the initial concentration of congo red, and usage frequencies were investigated and the rate constants were determined by regressing the experimental data. Calcination is an effective treatment to increase the photo activity of nanosized $TiO_2$ photocatalysts resulting from the improvement of crystallinity. The optimum calcination temperature of the catalyst for the efficient degradation of congo red was found to be $400^{\cric}C$. The rate constant was decreased with increase in the initial concentration of congo red and increased with increase in the $TiO_2$ loading. In the case of $TiO_2$ photocatalysts, the photocatalytic activity wasn't greatly affected by the usage frequencies.