DOI QR코드

DOI QR Code

Effect of Heat and Moisture on the Phase Transition in Dimethylammonium-Facilitated CsPbI3 Perovskite

다이메틸암모늄 유도 CsPbI3 페로브스카이트 상의 상전이 거동에 대한 열과 수분의 영향

  • Sohyun Kang (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Seungmin Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jun Hong Noh (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 강소현 (고려대학교 건축사회환경공학부) ;
  • 이승민 (고려대학교 건축사회환경공학부) ;
  • 노준홍 (고려대학교 건축사회환경공학부)
  • Received : 2023.07.31
  • Accepted : 2023.08.23
  • Published : 2023.08.27

Abstract

Cesium lead iodide (CsPbI3) with a bandgap of ~1.7 eV is an attractive material for use as a wide-gap perovskite in tandem perovskite solar cells due to its single halide component, which is capable of inhibiting halide segregation. However, phase transition into a photo inactive δ-CsPbI3 at room temperature significantly hinders performance and stability. Thus, maintaining the photo-active phase is a key challenge because it determines the reliability of the tandem device. The dimethylammonium (DMA)-facilitated CsPbI3, widely used to fabricate CsPbI3, exhibits different phase transition behaviors than pure CsPbI3. Here, we experimentally investigated the phase behavior of DMA-facilitated CsPbI3 when exposed to external factors, such as heat and moisture. In DMA-facilitated CsPbI3 films, the phase transition involving degradation was observed to begin at a temperature of 150 ℃ and a relative humidity of 65 %, which is presumed to be related to the sublimation of DMA. Forming a closed system to inhibit the sublimation of DMA significantly improved the phase transition under the same conditions. These results indicate that management of DMA is a crucial factor in maintaining the photo-active phase and implies that when employing DMA designs are necessary to ensure phase stability in DMA-facilitated CsPbI3 devices.

Keywords

Acknowledgement

This work was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency for Defense Development (ADD), funded by the Defense Acquisition Program Administration (D APA) in 2022 (No. UI220006TD). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (grant nos. NRF-2022M3J1A1063226 and RS-2023-00208467) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry, and Energy (grant nos. 20214000000680).

References

  1. F. H. Isikgor, S. Zhumagali, L. V. T. Merino, M. De Bastiani, I. McCulloch and S. De Wolf, Nat. Rev. Mater., 8, 89 (2023). 
  2. N. N. Lal, Y. Dkhissi, W. Li, Q. Hou, Y. B. Cheng and U. Bach, Adv. Energy Mater., 7, 1602761 (2017). 
  3. G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T.-W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, A. Palmstrom, D. J. Slotcavage, R. A. Belisle, J. B. Patel, E. S. Parrott, R. J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.-G. Boyen, S. Bent, F. Giustino, L. M. Herz, M. B. Johnston, M. D. McGehee and H. J. Snaith, Science, 354, 861 (2016). 
  4. A. J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S. P. Senanayak, P. M. Pearce, E. Mosconi, A. J. Pearson, Y. Wu, A. R. S. Kandada, T. Leijtens, F. De Angelis, S. E. Dutton, A. Petrozza and R. H. Friend, ACS Energy Lett., 2, 1416 (2017). 
  5. S. Mahesh, J. M. Ball, R. D. J. Oliver, D. P. McMeekin, P. K. Nayak, M. B. Johnston and H. J. Snaith, Energy Environ. Sci., 13, 258 (2020). 
  6. K. Wang, Z. Li, F. Zhou, H. Wang, H. Bian, H. Zhang, Q. Wang, Z. Jin, L. Ding and S. Liu, Adv. Energy Mater., 9, 1902529 (2019). 
  7. F. Bai, J. Zhang, Y. Yuan, H. Liu, X. Li, C.-C. Chueh, H. Yan, Z. Zhu and A. K.-Y. Jen, Adv. Mater., 31, 1904735 (2019). 
  8. A. K. Jena, A. Kulkarni, Y. Sanehira, M. Ikegami and T. Miyasaka, Chem. Mater., 30, 6668 (2018). 
  9. Y. Wang, G. Chen, D. Ouyang, X. He, C. Li, R. Ma, W.-J. Yin and W. C. H. Choy, Adv. Mater., 32, 2000186 (2020). 
  10. A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C. C. Stoumpos, M. G. Kanatzidis and J. Even, ACS Nano, 12, 3477 (2018). 
  11. G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith, J. Mater. Chem. A, 3, 19688 (2015). 
  12. W. Ke, I. Spanopoulos, C. C. Stoumpos and M. G. Kanatzidis, Nat. Commun., 9, 4785 (2018). 
  13. S. Tan, B. Yu, Y. Cui, F. Meng, C. Huang, Y. Li, Z. Chen, H. Wu, J. Shi, Y. Luo, D. Li and Q. Meng, Angew. Chem., Int. Ed., 61, e202201300 (2022). 
  14. H. Meng, Z. Shao, L. Wang, Z. Li, R. Liu, Y. Fan, G. Cui and S. Pang, ACS Energy Lett., 5, 263 (2020). 
  15. Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi and Y. Zhao, Angew. Chem., 131, 16844 (2019). 
  16. Q. Tai, K.-C. Tang and F. Yan, Energy Environ. Sci., 12, 2375 (2019). 
  17. Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi and Y. Zhao, Angew. Chem., Int. Ed., 58, 16691 (2019). 
  18. A. Chakrabarti, B. M. Lefler and A. T. Fafarman, J. Phys. Chem. C, 126, 21708 (2022). 
  19. L. Zhang, T. Guo, B. Liu, D. Du, S. Xu, H. Zheng, L. Zhu, X. Pan and G. Liu, ACS Appl. Mater. Interfaces, 14, 19614 (2022). 
  20. I. S. Zhidkov, D. W. Boukhvalov, A. F. Akbulatov, L. A. Frolova, L. D. Finkelstein, A. I. Kukharenko, S. O. Cholakh, C.-C. Chueh, P. A. Troshin and E. Z. Kurmaev, Nano Energy, 79, 105421 (2021). 
  21. H. Meng, Z. Shao, L. Wang, Z. Li, R. Liu, Y. Fan, G. Cui and S. Pang, ACS Energy Lett., 5, 263 (2020). 
  22. Y. G. Kim, T.-Y. Kim, J. H. Oh, K. S. Choi, Y.-J. Kim and S. Y. Kim, Phys. Chem. Chem. Phys., 19, 6257 (2017).