• Title/Summary/Keyword: Photo Transistor

Search Result 72, Processing Time 0.026 seconds

Easy Detection of Amyloid β-Protein Using Photo-Sensitive Field Effect

  • Kim, Kwan-Soo;Ju, Jong-Il;Song, Ki-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.339-344
    • /
    • 2012
  • This article describes a novel method for the detection of amyloid-${\beta}$($A{\beta}$) peptide that utilizes a photo-sensitive field-effect transistor (p-FET). According to a recent study, $A{\beta}$ protein has been known to play a central role in the pathogenesis of Alzheimer's disease (AD). Accordingly, we investigated the variation of photo current generated from p-FET with and without intracellular magnetic beads conjugated with $A{\beta}$ peptides, which are placed on the p-FET sensing areas. The decrease of photo current was observed due to the presence of the magnetic beads on the channel region. Moreover, a similar characteristic was shown when the Raw 264 cells take in magnetic beads treated with $A{\beta}$ peptide. This means that it is possible to simply detect a certain protein using magnetic beads and a p-FET device. Therefore, in this paper, we suggest that our method could detect tiny amounts of $A{\beta}$ for early diagnosis of AD using the p-FET devices.

A Study on the Relationship between Photo Leakage Current of a-Si:H Thin Film Transistor and the Photon Energy Spectrum of various Backlight Sources (비정질 실리콘 박막 트랜지스터의 광누설 전류와 다양한 광원의 광자 에너지스펙트럼과의 관계에 관한 연구)

  • Jeong, K.S.;Kwon, S.J.;Cho, E.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.70-71
    • /
    • 2009
  • Photoelectric characteristics of a hydrogenated amorphous silicon thin film transistor(a-Si:H TFT) were obtained for the illumination from various backlight sources and the results were compared and analyzed in terms of the photon energy spectral characteristics of the backlights obtained from the integration of the multiplication of the photon energy and the spectral intensity at etch wavelength. It was possible to conclude that the absorption of illuminated backlight to a-Si:H layer and the generation of electrons and holes are mainly carried out at the wavelength less than 500nm.

  • PDF

Photo-Leakage Currents in Organic Thin-Film Transistor

  • Cho, Sang-Mi;Han, Seung-Hoon;Kim, Jun-Hee;Lee, Sun-Hee;Choo, Dong-June;Uchiike, H.;Oh, Myung-Hwan;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1386-1389
    • /
    • 2005
  • We report the light illumination effect on the performance of pentacene organic thin-film transistor (OTFT). The TFT performance with and without illumination were measured at various temperatures. The off-state currents increase linearly with light intensity in the region of gate voltage where the holes are majority carriers in the TFT channel. The minimum photocurrents of OTFT increase with increasing light intensity.

  • PDF

A Versatile Design of Optronic Negative Resistance (호용성이 있는 광결합 부성저항회로의 설계)

  • 박성한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.4
    • /
    • pp.33-37
    • /
    • 1978
  • A versatile negative resistance using one transistor, one photo-coupler and three resisters, which can be used as either a voltage controlled or current controlled negative resistance, is designed. The versatility is obtained by changing the transistor and one connection of the circuit. The negative resistance region is linear and its value can be varied by varying one of the three resistor values.

  • PDF

Light Effects of the Amorphous Indium Gallium Zinc Oxide Thin-Film Transistor

  • Lee, Keun-Woo;Shin, Hyun-Soo;Heo, Kon-Yi;Kim, Kyung-Min;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.171-174
    • /
    • 2009
  • The optical and electrical properties of the amorphous indium gallium zinc oxide thin-film transistor ($\alpha$-IGZO TFT) were studied. When the $\alpha$-IGZO TFT was illuminated at a wavelength of 660 nm, the off-state drain current slightly increased, while below 550 nm it increased significantly. The $\alpha$-IGZO TFT was found to be extremely sensitive, with deep-level defects at approximately 2.25 eV near the midgap. After UV light illumination, a slight change occurred on the surface of the $\alpha$-IGZO films, such as in terms of the oxygen 1s spectra, resistivity, and carrier concentrations. It is believed that these results will provide information regarding the photo-induced behaviors in the $\alpha$-IGZO films.

Optoelectronic Properties of Sol-gel Processed SnO2 Thin Film Transistors (졸-겔 공법으로 제작된 SnO2 박막 트랜지스터의 광전기적 특성)

  • Lee, Changmin;Jang, Jaewon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.328-331
    • /
    • 2020
  • In this study, a highly crystalline SnO2 thin film was formed using a sol-gel process. In addition, a SnO2 thin-film transistor was successfully fabricated. The fabricated SnO2 thin-film transistor exhibited conventional n-type semiconductor properties, with a mobility of 0.1 cm2 V-1 s-1, an on/off current ratio of 1.2 × 105, and a subthreshold swing of 2.69. The formed SnO2 had a larger bandgap (3.95 eV) owing to the bandgap broadening effect. The fabricated photosensor exhibited a responsivity of 1.4 × 10-6 Jones, gain of 1.43 × 107, detectivity of 2.75 × 10-6 cm Hz1/2 W-1, and photosensitivity of 4.67 × 102.

Artificial retina using thin-film photodiode and thin-film transistor

  • Kimura, Mutsumi;Shima, Takehiro;Yamashita, Takehiko
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1787-1790
    • /
    • 2006
  • An artificial retina using thin-film photodiodes (TFPDs) and thin-film transistors (TFTs) is proposed. The characteristics of a TFPD and TFTs are measured, and the circuits of the retina pixel and retina array are designed. It is confirmed that the artificial retina can achieve edge enhancement and control photo-sensitivity.

  • PDF

Electrical and Photo-Response Properties of Reduced Graphene Oxide Field-Effect Transistor (Reduced graphene oxide를 이용한 전계효과 트랜지스터의 광전기적 특성)

  • Lee, Dae-Yeong;Min, Mi-Suk;Ra, Chang-Ho;Lee, Hyo-Yeong;Yu, Won-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.235-235
    • /
    • 2012
  • Reduced graphene oxide (rGO) 물질을 사용하여 전계효과 트랜지스터를 제작하였고 이의 광전기적 특성을 펄스 레이저와 진공 저온 측정을 통하여 분석하였다. 이를 통하여 rGO 소자의 광소자로써의 이용 가능성에 대하여 고찰하였다.

  • PDF

Effect of SiO2 Buffer Layer Thickness on the Device Reliability of the Amorphous InGaZnO Pseudo-MOS Field Effect Transistor (SiO2 완충층 두께에 따른 비정질 InGaZnO Pseudo-MOS Field Effect Transistor의 신뢰성 평가)

  • Lee, Se-Won;Hwang, Yeong-Hyeon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • In this study, we fabricated an amorphous InGaZnO pseudo-MOS transistor (a-IGZO ${\Psi}$-MOSFET) with a stacked $Si_3N_4/SiO_2$ (NO) gate dielectric and evaluated reliability of the devices with various thicknesses of a $SiO_2$ buffer layer. The roles of a $SiO_2$ buffer layer are improving the interface states and preventing degradation caused by the injection of photo-created holes because of a small valance band offset of amorphous IGZO and $Si_3N_4$. Meanwhile, excellent electrical properties were obtained for a device with 10-nm-thick $SiO_2$ buffer layer of a NO stacked dielectric. The threshold voltage shift of a device, however, was drastically increased because of its thin $SiO_2$ buffer layer which highlighted bias and light-induced hole trapping into the $Si_3N_4$ layer. As a results, the pseudo-MOS transistor with a 20-nm-thick $SiO_2$ buffer layer exhibited improved electrical characteristics and device reliability; field effective mobility(${\mu}_{FE}$) of 12.3 $cm^2/V{\cdot}s$, subthreshold slope (SS) of 148 mV/dec, trap density ($N_t$) of $4.52{\times}1011\;cm^{-2}$, negative bias illumination stress (NBIS) ${\Delta}V_{th}$ of 1.23 V, and negative bias temperature illumination stress (NBTIS) ${\Delta}V_{th}$ of 2.06 V.

Self-aligned Offset Gated Poly-Si TFTs by Employing a Photo Resistor Reflow Process (Photo Resistor Reflow 방법을 이용한 오프셋 마스크를 이용하지 않는 새로운 자기 정합 폴리 실리콘 박막 트랜지스터)

  • Park, Cheol-Min;Min, Byung-Hyuk;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1085-1087
    • /
    • 1995
  • A large leakage current may be one of the critical issues for poly-silicon thin film transistors(poly-Si TFTs) for LCD applications. In order to reduce the leakage current of poly-Si TFTs, several offset gated structures have been reported. However, those devices, where the offset length in the source region is not same as that in the drain region, exhibit the asymmetric electrical performances such as the threshold voltage shift and the variation of the subthreshold slope. The different offset length is caused by the additional mask step for the conventional offset structures. Also the self-aligned implantation may not be applicable due to the mis-alignment problem. In this paper, we propose a new fabrication method for poly-Si TFTs with a self-aligned offset gated structure by employing a photo resistor reflow process. Compared with the conventional poly-Si TFTs, the device is consist of two gate electrodes, of which one is the entitled main gate where the gate bias is employed and the other is the entitled subgate which is separate from both sides of the main gate. The poly-Si channel layer below the offset oxide is protected from the injected ion impurities for the source/drain implantation and acts as an offset region of the proposed device. The key feature of our new device is the offset lesion due to the offset oxide. Our experimental results show that the offset region, due to the photo resistor reflow process, has been successfully obtained in order to fabricate the offset gated poly-Si TFTs. The advantages of the proposed device are that the offset length in the source region is the same as that in the drain region because of the self-aligned implantation and the proposed device does not require any additional mask process step.

  • PDF