DOI QR코드

DOI QR Code

Effect of SiO2 Buffer Layer Thickness on the Device Reliability of the Amorphous InGaZnO Pseudo-MOS Field Effect Transistor

SiO2 완충층 두께에 따른 비정질 InGaZnO Pseudo-MOS Field Effect Transistor의 신뢰성 평가

  • Lee, Se-Won (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Hwang, Yeong-Hyeon (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Won-Ju (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이세원 (광운대학교 전자재료공학과) ;
  • 황영현 (광운대학교 전자재료공학과) ;
  • 조원주 (광운대학교 전자재료공학과)
  • Received : 2011.12.20
  • Accepted : 2011.12.24
  • Published : 2012.01.01

Abstract

In this study, we fabricated an amorphous InGaZnO pseudo-MOS transistor (a-IGZO ${\Psi}$-MOSFET) with a stacked $Si_3N_4/SiO_2$ (NO) gate dielectric and evaluated reliability of the devices with various thicknesses of a $SiO_2$ buffer layer. The roles of a $SiO_2$ buffer layer are improving the interface states and preventing degradation caused by the injection of photo-created holes because of a small valance band offset of amorphous IGZO and $Si_3N_4$. Meanwhile, excellent electrical properties were obtained for a device with 10-nm-thick $SiO_2$ buffer layer of a NO stacked dielectric. The threshold voltage shift of a device, however, was drastically increased because of its thin $SiO_2$ buffer layer which highlighted bias and light-induced hole trapping into the $Si_3N_4$ layer. As a results, the pseudo-MOS transistor with a 20-nm-thick $SiO_2$ buffer layer exhibited improved electrical characteristics and device reliability; field effective mobility(${\mu}_{FE}$) of 12.3 $cm^2/V{\cdot}s$, subthreshold slope (SS) of 148 mV/dec, trap density ($N_t$) of $4.52{\times}1011\;cm^{-2}$, negative bias illumination stress (NBIS) ${\Delta}V_{th}$ of 1.23 V, and negative bias temperature illumination stress (NBTIS) ${\Delta}V_{th}$ of 2.06 V.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, ETRI J., 31, 62 (2009). https://doi.org/10.4218/etrij.09.0208.0266
  3. J. Y. Kwon, K. S. Son, J. S. Jung, K. H. Lee, J. S. Park, T. S. Kim, K. H. Ji, R. Choi, J. K. Jeong, B. Koo, and S. Lee, Electrochem. Solid State Lett., 13, H213 (2010). https://doi.org/10.1149/1.3381023
  4. J. Y. Kwon, K. S. Son, J. S. Jung, K. H. Lee, J. S. Park, T. S. Kim, K. H. Ji, R. Choi, J. K. Jeong, B. Koo, and S. Lee, J. Electrochem. Soc., 158, H433 (2011). https://doi.org/10.1149/1.3552700
  5. S. Yang, D. H. Cho, M. K. Ryu, S. H. K. Park, C. S. Hwang, J. Jang, and J. K. Jeong, Appl. Phys. Lett., 96, 213511 (2010). https://doi.org/10.1063/1.3432445
  6. J. S. Park, K. S. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, Adv. Mater., 21, 329 (2009). https://doi.org/10.1002/adma.200802246
  7. J. Y. Kwon, J. S. Jung, K. S. Son, K. H. Lee, J. S. Park, T. S. Kim, J. S. Park, R. Choi, J. K. Jeong, B. Koo, and S. Y. Lee, Appl. Phys. Lett., 97, 183503 (2010). https://doi.org/10.1063/1.3513400
  8. J. S. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, and Y. G. Mo, Appl. Phys. Lett., 95, 123502 (2009). https://doi.org/10.1063/1.3232179
  9. Y. K. Moon, S. Lee, W. S. Kim, B. W. Kang, and C. O. Jeong, Appl. Phys. Lett., 95, 013507 (2009). https://doi.org/10.1063/1.3167816
  10. W. S. Kim, Y. K. Moon, K. T. Kim, S. Y. Shin, and J. W. Park. Thin Solid Films, 520, 578 (2011). https://doi.org/10.1016/j.tsf.2011.07.015
  11. S. Cristoloveanu and S. Williams, IEEE Electron Devices Lett., 13, 102 (1992). https://doi.org/10.1109/55.144972
  12. K. H. Ji, J. I. Kim, Y. G. Mo, J. H. Jeong, S. Yang, C. S. Hwang, S. H. K. Park, M. K. Ryu, S. Y. Lee, and J. K. Jeong, IEEE Electron Devices Lett., 31, 1404 (2010). https://doi.org/10.1109/LED.2010.2073439
  13. H. S. Shin, B. D. Ahn, Y. S. Rim, and H. J. Kim, J. KIEEME, 24, 473 (2011). https://doi.org/10.4313/JKEM.2011.24.6.473