• 제목/요약/키워드: Phosphate Transport

검색결과 100건 처리시간 0.024초

Recovery of Golden yellow and Cibacron LSG dyes from aqueous solution by bulk liquid membrane technique

  • Muthuraman, G;Ali, P. Jahfar
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.243-252
    • /
    • 2012
  • Tri-n-butyl phosphate (TBP) was used as carrier for the transport of Golden yellow and Cibacron LSG dyes through a hexane bulk liquid membrane. The transport efficiency of dyes by TBP was investigated under various experimental conditions such as pH of the feed phase (dyes solution), concentration of the receiving phase (NaOH solution), concentration of TBP in membrane, rate of stirring, effect of transport time, type of solvent, dye concentration in feed phase, effect of temperature.. The maximum transport dyes occurs at ratio of 1:1 TBP-hexane At pH 3.0 0.1 (feed phase) the transport dyes decreased. At high stirring speed (300 rpm) the dyes transport from the feed phase to the strip phase was completed within 60 minutes at $27^{\circ}C$. Under optimum conditions: Feed phase 100 mg/L dyes solution at pH 1.0 0.1, receiving phase 0.1 mol/L NaOH solution, membrane phase 1:1 TBP-hexane , Stirring speed 300 rpm and temperature $27^{\circ}C$, the proposed liquid membrane was applied to recover the textile effluent.

호도약침(胡桃藥鍼)이 수은(水銀)에 의한 급성신불전(急性腎不全) 가토(家兎)의 신세요관(腎細尿管) 물질이훈계(物質移勳系) 장애(障碍)에 미치는 영향(影響) (The Effect of Juglandis Semen Herbal Acupuncture on Alterations of Tubular Transport Function in Rabbits with Mercury-Induced Acute Renal Failure)

  • 이성한;김철홍;윤현민;장경전;안창범;송춘호
    • Korean Journal of Acupuncture
    • /
    • 제23권1호
    • /
    • pp.45-57
    • /
    • 2006
  • Objective : This study was undertaker to determine if Juglandis Semen herbal acupuncture (JSA) exerts protective effect against alterations in membrane transport function in rabbits with mercury-induced acute renal failure. Methods : Nephrotoxicity was induced by subcutaneous administration of Hg(a single dose of 10mg/kg) and JSA was performed at both sides of Shenshu($(BL_{23})$, Sinsu) for 7 days. Results: The administration of Hg at a subcutaneous single dose of 10 mg/kg caused a reduction in GFR to 12% of the basal value and an increase in fractional $Na^+$ excretion to 8.9-fold, indicating generation of acute renal failure. When JSA were given for 7 days prior to Hg administration, such changes were significantly attenuated. The fractional excretion of glucose and phosphate was increased to approximately 102- and 35-fold, respectively, in rabbits treated with Hg alone. The increase in rabbits treated with Hg following ISA are significantly lower than that in animals treated with Hg alone. Uptakes of glucose and phosphate in purified isolated brush-border membrane and $Na^+-K^+-ATPase$ activity in microsomal fraction were inhibited in rabbits treated with Hg alone, suggesting that impairment in proximal reabsorption of glucose and phosphate is resulted from a direct damage of membrane transport carriers and disruption of the normal $Na^+$ gradient. Such changes were prevented by JSA. Conclusion These results indicate that the administration of Hg causes impairment in reabsorption of solutes in the proximal tubule via the generation of reactive oxygen species. JSA provides the protection against the Hg-induced impairment in proximal reabsorption, and its effect may be resulted from its antioxidant action.

  • PDF

Characterization of DNA/Poly(ethylene imine) Electrolyte Membranes

  • Park, Jin-Kyoung;Won, Jong-Ok;Kim, Chan-Kyung
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.581-586
    • /
    • 2007
  • Cast DNA/polyethyleneimine (PEI) blend membranes containing different amounts of DNA were prepared using acid-base interaction and characterized with the aim of understanding the polymer electrolyte membrane properties. Two different molecular weights of PEI were used to provide the mechanical strength, while DNA, a polyelectrolyte, was used for the proton transport channel. Proton conductivity was observed for the DNA/PEI membrane and reached approximately $3.0{\times}10^{-3}S/cm$ for a DNA loading of 16 wt% at $80^{\circ}C$. The proton transport phenomena of the DNA/PEI complexes were investigated in terms of the complexation energy using the density functional theory method. In the case of DNA/PEI, a cisoid-type complex was more favorable for both the formation of the complex and the dissociation of hydrogen from the phosphate. Since the main requirement for proton transport in the polymer matrix is to dissociate the hydrogen from its ionic sites, this suggests the significant role played by the basicity of the matrix.

홍화자약침액(紅花子藥鍼液)이 수은(水銀)에 의한 가토(家兎)의 신세뇨관(腎細尿管) 물질이동(物質移動) 변화(變化)에 미치는 영향(影響) (Effect of Carthami Semen Aquacupunture(CSA) on Mercury-Induced Alterations in Tubular Transport Function in Rabbits)

  • 최영규;윤현민;송춘호;장경전;안창범
    • Journal of Acupuncture Research
    • /
    • 제19권5호
    • /
    • pp.199-208
    • /
    • 2002
  • Objective : This study was undertaken to determine if Carthami Semen Aquacupunc- ture(CSA) exerts protective effect against alterations in membrane transport function rabbits with mercury chloride(HG)-induced acute renal failure. Methods : The administration of Hg at a subcutaneous single dose of 10 mg/kg caused a reduction in GFR and an increase in fractional Na excretion, indicating generation of acute renal failure. When CSA were given for 7 days prior to Hg administration, such changes were significantly attenuated. The fractional excretion of glucose and phosphate was increased in rabbits treated with Hg alone. Results : The increase in rabbits treated with Hg following CSA are significantly lower than that in animals treated with Hg alone. Uptakes of glucose and phosphate in purified isolated brush-border membrane and Na-K-ATPase activity in microsomal fraction were inhibited in rabbits treated with Hg alone. Such changes were prevented by CSA. Uptakes of organic ions, PAH and TEA, in renal cortical slices were inhibited by the administration of Hg, which was prevented by CSA. Exposure of renal cortical slices to Hg in vitro caused an increased LDH release and lipid peroxidation, which was significantly prevented by CSA extract. Conclusions : These results indicate that the administration of Hg causes impairment in reabsorption of solutes in the proximal tubule via the generation of reactive oxygen species. CSA provides the protection against the impairment in proximal reabsorption, and its effect may be resulted from its antioxidant effect.

  • PDF

Charge Carrier Photogeneration and Hole Transport Properties of Blends of a $\pi$-Conjugated Polymer and an Organic-Inorganic Hybrid Material

  • Han, Jung-Wook;An, Jong-Deok;Jana, R.N.;Jung, Kyung-Na;Do, Jung-Hwan;Pyo, Seung-Moon;Im, Chan
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.894-900
    • /
    • 2009
  • This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), $\pi$-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)$VOPO_4{\cdot}H_2O$ (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) $VOPO_4{\cdot}H_2O$, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)$VOPO_4{\cdot}H_2O$, suggesting that transport occurred via (PEA)$VOPO_4{\cdot}H_2O$ molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.

단삼약침액(丹蔘藥鍼液)이 신장(腎臟) 근위세뇨관세포(近位細尿管細胞)에서 산화제(酸化劑)에 의한 인산(燐酸)의 이동억제(移動抑制)에 미치는 영향(影響) (The Effect of Salviae Radix on Oxidat-Inhibition of Phosphate Uptake in Renal Proximal Tubular Cells)

  • 이호동;윤현민;장경전;송춘호;안창범
    • Journal of Acupuncture Research
    • /
    • 제17권3호
    • /
    • pp.208-218
    • /
    • 2000
  • This study was undertaken to determine if Salviae Radix (SR) exerts protective effect against oxidant-induced inhibition of phosphate uptake in renal proximal tubular cells. Membrane transport function and cell death were evaluated by measuring phosphate uptake and trypan blue exclusion, respectively, in opossum kidney (OK) cells, an established proximal tubular cell line. $H_2O_2$ was used as a model oxidant. $H_2O_2$ inhibited the phosphate uptake in a dose-dependent manner over the concentration range of 0.1-0.5 mM. Similar fashion was observed in cell death. However, the phosphate uptake was more vulnerable to $H_2O_2$ than cell death, suggesting that $H_2O_2$-induced inhibition of phosphate uptake is not totally attributed to cell death. Decreasedphosphate uptake was associated with ATP depletion and inhibition of $Na^+$-pump activity as determined by direct inhibition of $N^+-K^+$-ATPase activity. When cells were treated with $H_2O_2$ in the presence of 0.05% SR, the inhibition of phosphate uptake and cell death induced by $H_2O_2$ was significantly attenuated. SR restored ATP depletion and decreased $Na^+-K^+$-ATPase activity, and this is likely responsible for the protective effect of SR on decreased phosphate uptake. The protective effect of SR was similar to the $H_2O_2$ scavenger catalase. SR reacts directly with $H_2O_2$ to reduce the effective concentration of the oxidant. The iron chelator deferoxamine prevented the inhibition of phosphate uptake and cell death induced by $H_2O_2$, suggesting that $H_2O_2$-induced cell injury is resulted from an iron-dependent mechanism. These results indicate that SR exerts the protective effect against $H_2O_2$-induced inhibition of phosphate uptake by reacting directly with $H_2O_2$ like the $H_2O_2$scavenger enzyme catalase, in OK cells. However, the underlying mechanism remains to be explored.

  • PDF

Effects of age on intestinal phosphate transport and biochemical values of broiler chickens

  • Li, Jianhui;Yuan, Jianmin;Miao, Zhiqiang;Guo, Yuming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권2호
    • /
    • pp.221-228
    • /
    • 2017
  • Objective: The objective of this experiment was to characterize the mRNA expression profile of type IIb sodium-inorganic phosphate cotransporter (NaPi-IIb) and the biochemical values of serum alkaline phosphatase (AKP), calcium, inorganic phosphorus, tibial ash and minerals of broiler chickens with aging. Methods: A total of 56 one-day-old Arbor Acres male broiler chickens were used. Broiler chickens were weighed and samples were collected weekly from day 1. Results: The result showed that before the growth inflection point, ash, calcium, and phosphorus content in the tibia of broiler chickens increased with growth (before 3 weeks of age), although there were no significant differences in chicks at different ages in the later period of the experiment and weight gain rate was relatively slow at this stage (4 to 6 weeks). NaPi-IIb gene expression in the small intestine in the early growth stage was higher than that in the later growth stage. Expression of calbindin and the vitamin D receptor protein in the intestinal mucosa increased with age in the duodenum and jejunum. Serum AKP activity first increased and subsequently decreased after peaking at 1 week of age, but there was no significant difference after 3 weeks of age. Conclusion: These results show that compared with the early growth stage, the weight-gain rate of broiler chickens in the late growth stage gradually decreased with gradual tibia maturation, along with weaker positive transport of phosphorus in the intestine and reinforced re-absorption of phosphorus in the kidney, which might be the reason that phosphorus requirement in the late growth stage was decreased.

PHOSPHATE-DEFICIENCY REDUCES THE ELECTRON TRANSPORT CAPACITIES OF THYLAKOID MEMBRANES THROUGH LIMITING PHOTOSYSTEM II IN LEAVES OF CHINESE CABBAGE

  • Park, Youn-Il;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • 제1권2호
    • /
    • pp.95-105
    • /
    • 1994
  • Experiments were carried out to investigate whether P, deficiency in detached 25 mM mannose-feeding led to a decline of the photosynthetic electron transport rates through acidification of the thylakoid lumen. With increasing mannose-feeding time, the maximal CO2 exchange rates and the maximal quantum yields of photosynthesis decreased rapidly up to 6 h by 73% then with little decrease up to 12 h. The ATP/ADP ratio declined by 54% 6 h after the treatment and then recovered to the control level at 12 h. However, the NADPH/NADP~ ratio was not significantly altered by mannose treatment. Electron transport rates of thylakoid membranes isolated from 6 h treated leaves did not change, but they decreased by 30% in 12 h treated leaves. The quenching analysis of Chl fluorescence in mannose-treated leaves revealed that both the fraction of reduced plastoquinone and the degree of acidification of thylakoid lumen remained higher than those of the control. The reduction of PSI in mannose fed leaves was inhibited due to acidification of thylakoid lumen (high qE). The reduction of primary quinone acceptor of PSII was inhibited by mannose feeding. Mannose treatment decreased the efficiency of excitation energy capture by PSII. Fo quenching was induced when treated with mannose more than 6 h, and had a reverse linear correlation with (Fv)m/Fm ratio. These results suggest that Pi deficiency in Chinese cabbage leaves reduce photosynthetic electron transport rates by diminishing both PSII function and electron transfer from PSII to PSI through acidification ofthylakoid lumen, which in turn induce the modification of photosynthetic apparatus probably through protein (de)phosphorylation.

  • PDF

신생아에서 칼슘 및 인 대사 평가와 질환 (Calcium and phosphate metabolism and disorders in the newborn)

  • 김혜순
    • Clinical and Experimental Pediatrics
    • /
    • 제50권3호
    • /
    • pp.230-235
    • /
    • 2007
  • In the early neonatal period, the neonate is challenged by the loss of the placental calcium transport and manifests a quick transition, from an environment in which PTHrP plays an important role to a PTH- and 1,25-dihydroxyvitamin D-controlled neonatal milieu. Disturbances in mineral homeostasis are common in the neonatal period, especially in premature infants and infants who are hospitalized in an intensive care unit. In many cases these disturbances are thought to be exaggerated responses to the normal physiological transition from the intrauterine environment to neonatal independence. Some disturbances in calcium and phosphate homeostasis are the result of genetic defects, which in many instances can now be identified at the molecular level. Although fetus develop remarkably normally in the presence of maternal calcium, PTH and vitamin D deficiency, the neonates demonstrate abnormalities that are consequences of the prior abnormal maternal calcium homeostasis. Evaluation and management of hypocalcemia and hypercalcemia in neonate requires specific knowledge of perinatal mineral physiology and the unique clinical and biochemical features of newborn mineral metabolism.

Optimum Gain Distribution of the Ampilfiers in High Power YLF($Nd^{3+}$)-Phosphate Glass($Nd^{3+}$) Laser System

  • CHi, Kyeong-Koo
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1989년도 제4회 파동 및 레이저 학술발표회 4th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.20-25
    • /
    • 1989
  • The nonlinear, time dependent photon transport equations of Frantz and Nodvik, which describe the amplification of an optical pulse in an active medium, are modified to a simpler equation which describes only the amplification of energy. with this equation, the output energy of the high power YLF(Nd3+)-Phosphate Glass(Nd3+) Laser System is calculated. When the stored energy density Est is 0.10J/㎤, 0.16J/㎤, 0.228J/㎤, and 0.50J/㎤, and with the assumption of uniform population inversion density, the final output energy of this laser system is 5.38J, 176J, 317J, and 283J, respectively. The gain saturation causes distortion of the output beam. This phenomenon is described in detail at the first three rod amplifier systems in the case of E=0.228J/㎤. The peak current and decay time constant of the flashlamps, which are used to obtain population inversion in the active medium, are investigated. The flashlamp driving circuit which has optimum operational performance should have {{{{ SQRT { LC} }} time about 100$\mu$sec.

  • PDF