• Title/Summary/Keyword: Phormidium

Search Result 38, Processing Time 0.023 seconds

The Relationship between Water-Bloom and Distribution of Microorganisms That Inhibit the Growth of Cyanobacterium (Anabaena cylindrica) (수화와 시안세균(Anabaena cylindrica) 생장 억제 미생물 분포도의 상관관계)

  • Kim, Chul-Ho;Lee, Jung-Ho;Choi, Yong-Keel
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.188-193
    • /
    • 1998
  • The authors examined the variations of environmental factors, the distributions of cyanobacteria, heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica according to development and extinction of cyanobacterial bloom at a site in Daechung Dam reservoir. And certified the relationship between each other. Water temperature variated in a typical pattern. pH and concentrations of dissolved oxygen and chlorophylla was high in bloom period, and lowered with the decline of bloom. Phosphorus played as a growth-limiting factor at this study site. Total nitrogen concentration increased during blooming period, which indicated that nitrogen has been fixed by aquatic organisms such as cyanobacteria. Cyanobacteria distributed from June 17, and such cyanobacterial species as Anabaena spp., Aphanizomenon spp., Microcystis spp., Oscillatoria spp. and Phormidium spp. was detected during study period. Anabaena spp. distributed relatively highly distributed from July 23 to September 22, and disappeared completely at September 29. Heterotrophic bacterial and cyanobacterial populations varied inverse-proportionally. There was a relevancy between the variations of Anabaena spp., heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica. Microorganisms that inhibit the growth of Anabaena cylindrica distributed from early growth phase of Anabaena spp. population to immediately after the extinction of Anabaena spp. With the population of Anabaena cylindrica growth-inhibiting microorganisms decreasing, increases of heterotrophic bacterial population followed it. Thease results indicate that microorganisms have a part in the extinction of cyanobacterial bloom, especially at its destroying period.

  • PDF

Cyanobacterial Blooms and Water Quality of Major Recreational Park Ponds in the Capital Region (수도권 주요 공원 연못의 수질 특성과 남조류 대발생)

  • Park, Myung-Hwan;Suh, Mi-Yeon;Hwang, Soon-Jin;Kim, Yong-Jae;Han, Myung-Soo;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.54-65
    • /
    • 2008
  • The seasonal dynamics of phytoplankton and water quality were evaluated bimonthly at 7 park ponds in the capital region from October 2004 to August 2005. With out the change of water temperature $(0.4\sim26.0^{\circ}C)$, cyanobacteria dominated in park ponds such as Gyungbokgung Gyunghyaeru and Seokchon reservoir. The standing crops of phytoplankton was significant related with cell densities of cyanobacteria (r=0.993), while they did not significant correlation with environmental factors. Almost of all park ponds in the capital region were classified as eutrophic state with high TP concentrations and TN/TP ratios less than 10. Major dominant cyanobacteria were as followed; Anabaena sp., Aphanocapsa elachista, Lyngbya contorta, Merismopedia elegans, Microcystis aeruginosa, M. wesenbergii, Microcystis sp., Oscillatoria sp., Phormidium tenue, and Plectonema sp. To date, although the concentration of chlorophyll-${\alpha}$ and cyanobacterial densities in the capital region was below the 'danger' level of WHO guidelines value, the monitoring of cyanobacterial densities and its toxin (microcystin) in recreational/bath water should be continued.

The Water Quality Assessment based on Phytoplankton Community and Physico-chemical Factors of Oship-stream, Songchun-stream and Namdae-stream in Gyeongsangbukdo (경상북도 오십천, 송천천과 남대천의 환경요인과 식물플랑크톤 군집분석에 의한 수질평가)

  • Kim, Yong-Jin;Lee, Ok-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.428-437
    • /
    • 2013
  • Physico-chemical water quality parameters and the phytoplankton communities from 12 sites in Oship-stream, Songchunstream, and Namdae-stream, located Gyeongsangbukdo Uljin-gun, Yeongdeok-gun, and Pyeonghae-eup respectively, were investigated from April 2009 to February 2010. Oship-stream, which is an open estuary, was easily affected by ocean current compared to that of Songchun-stream and Namdae-stream. OS3 and OS4 conductivity was higher with a season average of 3,397 ${\mu}s/cm$. The streams were mesotrophic to hypertrophic. Biological oxygen demand (BOD) was about 3mg/L, which was level 2 on the water quality ratings, but a concentration of 5mg/L in April 2009 indicated increased pollution due to drought. A total of 118, 117, and 124 phytoplankton taxa were found in Oship-stream, Songchun-stream, and Namdae-stream, respectively. The apparent dominant species in the polluted waters included Cryptomonas ovata, Fragilaria construens var. venter, Oscillatoria limnetica, O. limosa, and Phormidium tenue. All of Oship-stream, SC2 and SC4 of Songchun-stream, and ND3 of Namdae-stream were eutrophic as a result of standing crop analysis. BOD was highly correlated with chlorophyll-a content(r=0.52). Phosphorus concentration and proliferation of phytoplankton were thought to most affect BOD concentration in all three streams.

The Study of Cyanobacterial Flora from Geothermal Springs of Bakreswar, West Bengal, India

  • Debnath, Manojit;Mandal, Narayan Chandra;Ray, Samit
    • ALGAE
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2009
  • Geothermal springs in India, formed as a result of volcanic or tectonic activities, are characterized by high temperature and relatively abundant reduced compounds. These thermal springs are inhabited by characteristic thermophilic organisms including cyanobacteria. Cyanobacteria are among the few organisms that can occupy high temperature aquatic environments including hot springs. In alkaline and neutral hot springs and streams flowing from them cyanobacteria can form thick colourful mats that exhibit banding patterns. The present investigation involves study of mat forming cyanobacterial flora from hot springs located in Bakreswar, West Bengal, India. The important species found are Synechococcus bigranulatus, S. lividus, Gloeocapsa gelatinosa, G. muralis, Phormidium laminosum, P. frigidum, Oscillatoria princes, O. fragilis, Lyngbya lutea, Pseudanabaena sp., Calothrix thermalis, and Fischerella thermalis. Their distribution pattern in relation to physico-chemical parameters of spring water has also been studied. Three cyanobacterial strains of the above mentioned list were grown in culture and their pigment content and nitrogen fixing capacity were also studied. Nitrogen fixing capacities of Calothrix thermalis, Nostoc sp. (isolated in culture) and Fischerella thermalis are 5.14, 0.29, and 2.60 n mole $C_2H_4/{\mu}g$ of Chl-${\alpha}$/hr respectively. Carotenoid : Chlorophyll-${\alpha}$ ratio of four mat samples collected from Kharkunda, Suryakunda, Dudhkunda and bathing pool are 2.45, 1.60, 1.48, and 1.34, respectively. Higher value of Carotenoid : Chlorophyll-${\alpha}$ ratio coincided with higher temperature.

Diversity of Micro-algae and Cyanobacteria on Building Facades and Monuments in India

  • Samad, Lakshmi Kumari;Adhikary, Siba Prasad
    • ALGAE
    • /
    • v.23 no.2
    • /
    • pp.91-114
    • /
    • 2008
  • Fifty seven taxa of Cyanobacteria and 15 taxa of Chlorophyta were recorded from the exterior of buildings and rock surfaces of monuments in different regions in India. Four cyanobacteria, e.g. Chroococcidiopsis kashayi, Pseudophormidium indicum, Plectonema puteale and Scytonema geitleri, and the green alga Trentepholia abietina var. tenue occur on the sub-aerial habitats throughout the year. In addition, five other green algae: Chlorococcum infusionum, Scenedesmus arcuatus, Trentepholia aurea, Gloeocystis polydermatica and Printzina effusa, and 18 other cyanobacteria taxa of the genera Chroococcus (5), Asterocapsa (1), Cyanosarcina (2), Gloeocapsa (7), Gloeothece (2) and Scytonema (1) occur on the sub-aerial surfaces enduring extreme temperature and desiccation during summer months of the tropics. During the rainy season, the warm and humid climatic regime coupled with availability of moisture supported an additional ten green algae and 29 cyanobacteria in eight and 17 genera, respectively. The green algal genera Klebsormidium, Stichococcus and Trebouxia, which are dominant in temperate regions, did not occur on the sub-aerial habitats in India, however, species of Gloeocapsa, Chroococcus, Chroococcidiopsis, Phormidium, Leptolyngbya, Nostoc, Scytonema, Chlorella and Trentepholia showed global occurrence in similar habitats.

Environmental Studies of the Lower Part of the Han River V. Blooming Characteristics of Phytoplankton Communities (한강하류의 환경학적 연구 V.식물플랑크톤 군집 대발생의 특징)

  • Jeong, Seung-Won;Lee, Jin-Hwan;Yu, Jong-Su
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.255-262
    • /
    • 2003
  • Ecological characteristics of phytoplankton communities were investigated biweekly at 6 stations from Feb. 2001 to Feb. 2002 at the lower part of the Han River. During the study, a total of 267 taxa which were composed of 114 green algae, 104 diatoms, 22 blue-green algae, 13 chrysophytes and 2 dinoflagellates were observed. The standing crops of phytoplankton communities were ranged from 1.30 ${\times}10^6$ cells ${\cdot}l^{-1}$ to 37.47 ${\times}10^6$ cells ${\cdot}l^{-1}$. The dominant species were 11 taxa including Pediastrum duplex, Scenedesmus quadricauda in green algae, Osillatoria limosa, Microcystis aeruginosa, Merisomorpedia sp., Phormidium sp. in blue-green algae, and Asterionella gracillima, Aulacoseira granulata, Fragilaria crotonensis, Stephanodiscus hantzschii f. tenuis, Synedra acus in diatoms. Asterionella gracillima and Stephanodiscus hantzschii f. tenuis were abundant at every station from winter to spring. Stephanodiscus hantzschii f. tenuis occupied the highest dominant ratio and standing crop. From summer to autumn, dominant species were Aulacoseira granulata at all stations and blue-green algae such as Osillatoria limosa, Microcystis aeruginosa, Merisomorpedia sp. at some stations. These 4 species were mostly present at the lower stations 4, 5, 6 and very few at the upper stations 1, 2, 3.

Formation of Assimilable Organic Carbon from Algogenic Organic Matter

  • Kim, Ji-Hoon;Chung, Soon-Hyung;Lee, Jing-Yeon;Kim, In-Hwan;Lee, Tae-Ho;Kim, Young-Ju
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • The objective of this study was to assess the variation in the concentration of assimilable organic carbon (AOC) in a drinking water resource, and investigate the characteristics of AOC derived from algae. The seasonal change in AOC at the Kamafusa dam corresponded to changes in the algal cell number. In order to understand the relationship between AOC and algae in a water resource and water purification plant, two kinds of laboratory experiment were performed. The algal culture experiment showed that extracellular organic matter (EOM) that was released during the growth of Phormidium tenue with M-11 medium led to significant increases in the AOC concentration, but no significant variation in the AOC concentration was observed with CT medium containing a high dissolved organic carbon concentration. The chlorination experiment showed that the AOC included in EOM was not easily removed by chlorination, although the AOC included in intercellular organic matter released from the algal cells by chlorination was removed under conditions where residual chlorine was detected.

Ecology of Algal Mats from Hypersaline Ponds in the British Virgin Islands

  • Jarecki, Lianna;Sarah M. , Burton-MacLeod;Garbary, David J.
    • ALGAE
    • /
    • v.21 no.2
    • /
    • pp.235-243
    • /
    • 2006
  • Benthic sediment samples ranging from poorly aggregated sand to complex, stratified mats were collected from six hypersaline ponds from March and July 1995 in the British Virgin Islands. Assemblages were analyzed with respect to species composition and abundance within visibly distinct layers in each mat sample. In individual ponds there was no apparent association between changing depth and the development of the benthic mats. Some species were present in all samples (e.g. Oscillatoria sp.) while others were restricted to single sites (e.g. Johannesbaptistia pellucida). Primary species included Microcoleus chthonoplastes, Phormidium spp., Coccochloris stagnina, and purple sulfur bacteria. Quantitative analysis of community structure included cluster and principal component analysis. Samples from individual ponds were often clustered; however, this was subject to seasonal variation. Mats collected in March were generally thicker and contained more layers than those in July. Variation among sites was not explained by the measured variation in environmental factors such as average pond salinity, depth, and oxygen concentration (mg/L). This study provides a detailed analysis of mat communities in hypersaline ponds and compares them with similar mat communities from other areas.

Semiweekly variation of Spring Phytoplankton Community in Relation to the Freshwater Discharges from Keum River Estuarine Weir, Korea (금강하구언 담수방류와 춘계 식물플랑크톤 군집의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Yoo, Yeong-Du;Kim, Young-Geel;Jeong, Hae-Jm
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.154-163
    • /
    • 2005
  • Irregular discharges of freshwater through the water gates of the Keum River Estuarine Weir, Korea, whose construction had been completed in 1998 with its water gates being operated as late as August 1994, drastically modified the estuarine environment. Sharp decrease of salinity along with the altered concentrations of inorganic nutrients are accompanied with the irregular discharges of freshwater into the estuary under the influence of regular semi-diurnal tidal effect. Field sampling was carried out on the time of high tide at 2 fixed stations(St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to investigate into the semi-weekly variation of spring phytoplankton community in relation to the freshwater discharges from Keum River Estuarine Weir. CV(coefficient of variation) of salinity measurements was roughly 2 times greater in St.1 than that in St.2, reflecting extreme salinity variation in St.1 Among inorganic nutrients, concentrations of N-nutrients($NO_3^-,\;NO_2^-$ and $NH_4^+$) were clearly higher in St.1, to imply the more drastic changes of the nutrient concentrations in St.1. than St.2 following the freshwater discharges. As a component of phytoplankton community, diatoms were among the top dominants in terms of species richness as well as biomass. Solitary centric diatom, Cyclotella meneghiniana, and chain-forming centric diatom, Skeletonema costatum, dominated over the phytoplankton community in order for S-6 weeks each (Succession Interval I and II), and the latter succeeded to the former from the time of <$10^{\circ}C$ of water temperature. Cyanobacterial species, Aphanizomenon Posaquae and Phormidium sp., which might be transported into the estuary along with the discharged freshwater, occupied high portion of total biomass during Succession Interval III(mid-April to late-May). During this period, freshwater species exclusively dominated over the phytoplankton community except the low concentrations of the co-occurring 2 estuarine diatoms, Cyclotella meneghiniana and Skeletonema costatum. During the 4th Succession Interval when the water temperature was over $18^{\circ}C$, the diatom, Guinardia delicatula, was predominant for a week with the highest dominance of $75\%$ in discrete samples. To summarize, during all the Succession Intervals other than Succession Interval III characterized by the extreme variation of salinity under cooler water temperature than $18^{\circ}C$, the diatoms were the most important dominants for species succession in spring. If the scale and frequency of the freshwater discharge could have been adjusted properly even during the Succession Interval III, the dominant species would quite possibly be replaced by other estuarine diatom species rather than the two freshwater cyanobacteria, Aphanizomenon flosaquae and Phormidium sp.. The scheme of field sampling every other day for the present study was concluded to be the minimal requirement in order to adequately explore the phytoplankton succession in such estuarine environment as in Keum River Estuary: which is stressed by the unpredictable and unavoidable discharges of freshwater under the regular semi-diurnal tide.

Application of Microalgae for Managing Agricultural Water Quality (농업용수 수질관리를 위한 미세조류의 활용)

  • Kim, Jin-Ho;Kim, Won-Il;Lee, Jong-Sik;Jung, Goo-Bok;Shin, Joong-Du;Sung, Jung-Sook;Lee, Jung-Taek;Yun, Sun-Gang;Choi, Chul-Mann
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.7-16
    • /
    • 2007
  • The objective of this research was to review the correlation between microalgae and agricultural water quality. Although microalgae has been considered as an essential factor for control1ing of water ecosystem, little attention has been paid for evaluating of microalgae as an important factor for water quality management. But it can be use to make us know the water pollution state at saprobic system, LTSI (Lake Tropic State Index), DAIpo (Diatom Assemblage Index to Organic Pollution), and AGP (Algal growth potential). In saprobic system, it is used microalgae such as Actinastrum hantzschii var. fluviatile, Asterionella gracillima, Coelastrum microporum, Synedra acus, Dictyosphaerium pulchellum, Micractinium pusillum, Cyclotella meneghiniana, Microcystis aeruginosa, Scenedesmus quadricauda, and Nitzschia palea for assessment water quality. In addition, they have ecologically significant characteristics such as dominant species, cosmopolitan species, redtide causative species etc. Also, microalgae such as Botryococcus braunii, B. sp., Chlorella vulgaris, C. sp., Phormidium sp., Scenedesmus quadricauda, Selenastrum capricornutum, Spirulina maxima, and S. platensis have an effect on improvement of water quality.