• Title/Summary/Keyword: Phenyl radical

Search Result 61, Processing Time 0.034 seconds

A Route for Sulfuranyl Radical by an Electron Transfer from Sodium Naphthalenide to a Triarylsulfonium Salt$^1$

  • Kim, Kyong-Tae;Bae, Hye-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.165-167
    • /
    • 1987
  • Reaction of 5-(2-thianthreniumyl)thianthrene perchlorate with sodium naphthalenide in the presence of benzenethiol in tetrahydrofuran at -$78^{\circ}C$ proceeded via a formation of a sulfuranyl radical to give thianthrene (66%), 2-phenylthiothianthrene (33%), phenyl 2-(2-thianthrenylthio)phenyl sulfide (traceable amount), and some unknowns, along with naphthalene and very small amount of 1,4-dihydronaphthalene.

Synthesis and Radical Polymerization of p-(2,2,3,3,-Tetracyanocyclopropyl)phenyl Acrylate and Methacrylate

  • Lee, Ju-Yeon;Kim, Kyoung-Ah;Mun, Gil-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.283-287
    • /
    • 1993
  • p-(2,2,3,3-Tetracyanocyclopropyl)phenyl acrylate (3a) and p-(2,2,3,3-tetracyanocyclopropyl)phenyl methacrylate (3b) were prepared by the reactions of bromomalononitrile with p-acryloyloxybenzylidenemalononitrile (2a) or p-methacryloyloxy-benzylidenemalononitrile (2b), respectively. Compounds 3a and 3b were polymerized with free radical initiators to obtain the polymers with multicyano functionalities in the cyclopropane ring. The resulting polymer 4a was soluble in acetone but the polymer 4b was not soluble in common solvents. The inherent viscosities of polymers 4a were in the range of 0.10-0.15 dL/g in acetone and those of 4b were in the range of 0.20-0.30 dL/g in 98% sulfuric acid. Solution-cast films were cloudy and brittle, showing $T_g$ values in the range of 106-125$^{\circ}$C.

Syntheses and Iron(II) Induced Reactions of Phenyl-Substituted 1,2,4-Trioxanes

  • 오창호;Gary H. Posner
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.644-648
    • /
    • 1997
  • Introduction of an alkyl substituent at the $C_{4\beta}$ position of antimalarial trioxanes has caused them to become more active in their antimalarial activity. We have designed a structurally simple 4β-phenyl substituted trioxane (3) as an active antimalarial since it can form a more stable carbon radical when reacting with ferrous bromide. The trioxane 3 has been prepared along with the corresponding isomer 4 according to the previously reported procedure. The synthesized trioxanes 3 and 4 were finally separated by using HPLC and assigned their stereochemistry by spectroscopy and X-ray crystallography. Their antimalarial activities were surprisingly low. The low activity was then rationalized based on the product distribution of the ferrous ion induced reaction of these trioxanes. These trioxanes with ferrous bromide did not produce any detectable amount of the corresponding $C_4$-hydroxylated product, consistent with the fact that neither $C_{4\beta}$-phenyl substituted nor $C_{4\alpha}$-phenyl substituted trioxane has any antimalarial activity. It implies that a $C_4$ substituent of antimalarial trioxanes has to stabilize an adjacent carbon-centered radical in a specific stability range in order to show a good antimalarial activity. This study, combined with related studies, could help develop more potent antimalarial trioxanes.

Synthesis of Dihydroxylated Chalcone Derivatives with Diverse Substitution Patterns and Their Radical Scavenging Ability toward DPPH Free Radicals

  • Kim, Beom-Tae;O, Kwang-Joong;Chun, Jae-Chul;Hwang, Ki-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1125-1130
    • /
    • 2008
  • A series of dihydroxylated chalcone derivatives with diverse substitution patterns on a phenyl ring B and the para-substituents on a phenyl ring A were prepared, and their radical scavenging activities were evaluated by simple DPPH test to determine quantitative structure-activity relationship in these series of compounds. The chalcone compounds with the ortho- (i.e. 2',3'- and 3',4'-) and para- (i.e. 2,5'-) substitution patterns show an excellent antioxidant activities (80-90% of control at the concentration of 50 $\mu$M) which are comparable to those of ascorbic acid and $\alpha$ -tocopherol as positive reference materials. On the contrary, the compounds with meta- (i.e. 2',4'-, 3',5'-) substitution pattern demonstrate very dramatic decrease in activities which are around 25% of the control even at the concentration of 200 $\mu$ M (IC50 > 200 $\mu$ M). These dramatic differences could be interpreted in terms of the ease formation of fairly stable semiquinone radicals from the ortho- and parasubstituted chalcone molecules through facilitating electron delocalization. Our results indicate that the substitution patterns of two hydroxyl groups on ring B are very important structural factors for their radical scavenging activity enhancement. Meanwhile, the substituents at para-position of the phenyl ring A of chalcones have no influence on the activity.

The Mechanism of the Photocyclization of N-(2-Haloarylmethyl)Pyridinium and N-(arylmethyl)-2-Halopyridinium Salts

  • Yong-Tae Park;Chang-Han Joo;Chung-Do Choi;Kum-Soo Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.163-169
    • /
    • 1991
  • The photochemical and photophysical properties of N-(2-haloarylmethyl)pyridinium, N-(arylmethyl)-2-halopyridinium, N-(2-haloarylmethyl)-2-halopyridinium salts and N-(2-halobenzyl)-isoquinolinium salt are studied. The pyridinium salts photocyclize to afford isoindolium salts, while the isoquinolium salts do not. In the photocyclization of N-(2-chlorobenzyl)-2-chloropyridinium salts, pyrido[2,1-a]-4-chloroisoindolium salt is formed by the cleavage of chlorine of pyridinium ring. This indicates that the excited moiety is not the phenyl ring, but the pyridinium ring. The triplet states of the pyridinium salts are believed to be largely involved in the photocyclization, since oxygen retards most of the reaction. Some assistance of a ${\pi}$-complex between the excited chlorine moiety of the salt and phenyl plane of the same molecule is required to explain the reactivity of the salts. N-(Benzyl)-2-chloropyridinium salt is two times more reactive than N-(2-chlorobenzyl)pyridinium salt. N-(Benzyl)-2-chloropyridinium salt can form ${\pi}-complex$ effectively because of the electron-rich phenyl group. The ${\pi}$-complex affords an intermediate, phenyl radical by cleaving the chlorine atom. The photocyclized product, isoindolium salt is obtained by losing the hydrogen atom from the phenyl radical. The reactive pyridinium salts 1a, 2a and 3a have a low fluorescence quantum yield (${\Phi}F$ < 0.01) and a higher triplet energy (ET > 68 kcal/mole) than the unreactive quinolinium salt. The unreactivity of isoquinolinium salt can be understood in relation to its high fluorescence quantum yield and its low triplet energy $(E_T = 61 kcal/mole).$.

Quantitative Structure-Activity Relationships of Salicylic Acid Derivatives by Quantum Chemical Calculations (양자화학적 계산에 의한 살리씰산유도체의 정량적 구조-활성 상관관계)

  • Rhee, Jong-Dal
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.80-85
    • /
    • 1988
  • QSAR of Salicylic acid derivatives, as anti-inflammatory agent, classified into Group I (not-having-5-phenyl ones) and Group II (having-5-phenyl ones) were investigated by quantum chemical calculations. The results are below: not significant statistically for both of Group I and Group II, but significant for each Group. $potency=-8.46X_{5}+1.639\;n=5\;r=0.77\;se=0.31\;for\;Group\;I.$ $({\pm}4.05)\;({\pm}0.5)$ where $X_5$ means charge of carbon atom bonded to hydroxyl radical. $potency=0.16X_{19}+7427.38HO-6629.85X_{15}+4977.40X_{10}+351.51X_5+3378.84$ $({\pm}0.17)\;({\pm}10.18)\;({\pm}11.70)\;({\pm}33.78)\;({\pm}4.41)\;({\pm}13.13)$ n=7 r=0.99 se=0.019 for Group II. where $X_{19}$ and $X_{15}$ stand for charges of the para carbon and the first carbon atoms in phenyl radical, respectively and $X_{10}$, charge of carboxylic carbon atom, HO, HOMO energy. It seems to be possible to qualitatively predict potency of drug by Pearson's HSAB theory. It means that drug should possess low LUMO energy and high HOMO energy.

  • PDF

Mono-dehalogenation of gem-Dihalocyclopropanes Using Tetracarbonylhydridoferrate

  • Shim, Sang-Chul;Lee, Seung-Yub;Lee, Dong-Yub;Choi, Heung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.845-849
    • /
    • 1994
  • Tetracarbonylhydridoferrate, $HFe(CO)^-_4$, generated by the reaction of $Fe(CO)_5$ with alkaline solution, is a good reducing agent for mono-dehalogenation of gem-dihalocyclopropanes. It also acts as a good reducing catalyst under phase transfer reaction conditions. 1,1-Dibromo-2-phenylcyclopropane and 1,1-dichloro-2-phenylcyclopropane were reduced to the corresponding mono-dehalogenated products in excellent yields. Thermodynamically stable trans-l-bromo-2-phenyl cyclopropane was formed as the major product over the cis-isomer, trans/cis=3/2. The 1-bromo-2-phenyl cyclopropane radical intermediate was formed by single electron transfer from $HFe(CO)^-_4$. Dissociation of bromide anion, followed abstraction of hydrogen radical from alcoholic solvent would lead to the formation of the stable trans-isomer. The further mechanistic aspects were discussed.

The “Trivial” Mechanism for the Photo-Fries Reaction of Phenyl Acetate and Biphenylyl Acetates

  • Yun, Hyo Jeong;Go, Seong Hye;Go, Mi Gyeong;Choe, U Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.901-904
    • /
    • 2000
  • The mechanism for the photo-Fries rearrangement of phenyl acetate andbiphenylyl acetates were reinvestigat-ed in phenol (or phenol derivatives) containing media. The results showed that the phenol (or phenol deriva-tives) which is the most common by-product of Fries reaction reacts with acyl radical togive Fries-product. These phenol (or phenol derivatives) contributions to the Fries-products were suggested as the Trivial mecha-nism for the photo-Fries reaction.