The "Trivial" Mechanism for the Photo-Fries Reaction of Phenyl Acetate and Biphenylyl Acetates

Hyo Jung Yoon, Seung Hye Ko, Mee Kyung Ko, and Woo Ki Chae*
Department of Chemistry Education, Seoul Vational Lnmersin, Nwanak-Ku. Shilm-Dong, Seoul 151-7+2, Korea Receved June 21. 2000

Abstract

The mechumism for the photo-Fries rearrangement of phenyl acetate and bipheny lyl acetates were reinvestigated in phenol (or phenol derivatives) containing media. The results showed that the phenol (or phenol derivatives) which is the most conmon by-product of Fries reaction reacts with acyl radical to give Fries-product. These phenol (or phenol derivatives) contributions to the Fries-products were suggested as the Trivial mechatnism for the photo-Fries reaction.

Introduction

Many reporss' have appeared during the last decade in connection with the mechanism of the photo-Frics reaction. These contributions have conlirmed that photo-Frises reaction occurs through C -O homolytic cleavage from its singlet excited state. followed by radical recombination. In-cage recombination affords the migration products while hydrogen abstraction by the ary loxy radical leads to the formation of phenol derivatives. However a few reports have been made concerning to the photochemical reaction of biphenyl system such as biphenylyl acctate which is an active metabolite of fenbufen. ${ }^{3.4}$
In spite of the considerable interest atracted by the photochemistry of phenol derivatives not only from the fundamental but also from the applied point of view. ${ }^{5}$ a little is known about the photo-Frics reaction process in phenol containing media. ${ }^{67}$
Herein we report photo-Frics reaction of phenyl acctates (1a. 1b. 1c) and biphenylyl acclates (1d. 1e) under presence of phenol or phenol derivatives which are the most common by-product of Fries reaction to investigate the phenol effect on the mechanism of photo-Fries reaction.

1
a, $\mathrm{R}_{1} \sim \mathrm{R}_{5}=\mathrm{H}$
b, $R_{1} \sim R_{5}=D$
c, $\quad \mathbf{R}_{2} \sim \mathbf{R}_{\mathbf{4}}=\mathbf{H}, \quad \mathbf{R}_{1}=\mathbf{R}_{\mathbf{5}}=\mathbf{M e}$
d, $\quad R_{2} \sim R_{3}=H, \quad R_{1}=P h$
e, $\quad R_{1}=R_{2}=R_{4}=R_{5}=H, \quad R_{3}=P h$

Experimental section

Materials and general methods. All solvents were freshly distilled and dried before use according to standard procedures. All other reagents were used as received unless otherwise specified.
Absorption spectra were measured on a Shimadzu UV2600 or Varian Cary 300 spectrometer. Gas chromatogra-ply-mass spectrometry (GC-MS) measurements were made on a Hewlett-Packard 5980 gas chromatograph with a Hewlett-Packard 5988 mass spectrometer (EI 70 eV) using an Ultra-1 (25 m). Ultra-2 $(50 \mathrm{~m}$). Pona (50 m) and DB-1
(30 m) capillary column.
${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DPX-300 or Bruker AMX-500 spectrometer. IR spectra were recorded on a Jasco IR-810 or Perkin-Elmer 2000 spectrophotometer. Mass analy ses were carricd out on a Jeol JMX-AX 505 instrument.
Irradiations were carricd out in quart\% cell with a Hanovia 450 W. mediun pressure Hg -Arc lamp or a Rayonet photoreactor cquipped with 16 RPR 254 nm lamps.
Synthesis of phenyl acetate derivatives ($1 \mathrm{~b}, 1 \mathrm{c}$). Acctyl chloride (3.2 mL .0 .045 mol) was added dropwise to phenol$\mathrm{d}_{6}(3.10 \mathrm{~g} .0 .03 \mathrm{~mol})$ and the mixture was stirred for 1.0 h at $40^{\circ} \mathrm{C}$. Alter addition of 10% hydrochloric acid to make homogencous solution. the mixture was transferred to a separatory fiunnel and cextracted with diethyl ether.

The combincd extracts were washed with 5% hydrochloric acid. dilute sodium hydroxide solution and distilled water. The extracts were dricd over magnesium sulphate and the solvent was removed in vacto. The residual colorless oil was chromatographed on silica gel to obtain $2.48 \mathrm{~g}(58 \%)$ of pheny l-ds acctate (1b): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta 2.29$ (s. 3H). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MH} \neq \mathrm{CDCl}_{3}$): $\delta 21,5,121.6,126.0$. 129.6. 151.0. 169.9. IR (neat): $176+\mathrm{cm}^{-1}$ GC-MS: me 141. 99. 71. HRMS (EI^{+}) Calc. For $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{D}_{5} \mathrm{O}_{2}: 141.0838$. Found: 141.0836.

To the mixture of 2.6 -dimethylphenol (10.07 g .0 .082 nol) and acetic andydride (13.0 g .0 .127 mol) was added a few drops of concentrated sulphuric acid. The mixture was stirred for 1.5 h at $60{ }^{\circ} \mathrm{C}$ and cooled to room temperature with 50 mL of water and then extracted with diethyl ether. The combined extracts were washed with distilled water and dried over magnesium sulphate. The solvent was removed in vacuo and the residual liquid was clromatographed on silica gel to afford $10.56 \mathrm{~g}(78 \%)$ of 2.6 -dimethylpluyy acetate (1c): 'H NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta 2.2$ (s. 6 H). 2.4 (s. 3 H). 7.1 (in. 3 H). ${ }^{13} \mathrm{C}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 16.6 .20 .8 .126 .2$. 129.0. 130.5. 148.7. 169.0. IR (neat): $1760 \mathrm{cml}^{-1}$. GC-MS: me 16t, 122. 107. 91, 77. HRMS (EI^{-}) Calc. For $\mathrm{C}_{[10} \mathrm{H}_{12} \mathrm{O}_{2}$: 164.0837. Found 164.0833.

Synthesis of 2-hiphenylyl acetate (1d). To the mixture of 2 -pheny:1phenol (10.2 g .0 .06 mol) and acetic anlydride (9.0 mL .0 .095 mol) was added a few drops of concentrated sul-
phuric acid. The mixture was stirred for 1.5 h at $60^{\circ} \mathrm{C}$ and cooled to room temperature with 40 mL of water. This mixlure was transferred to a separatory funnel and extracted with diechyl ether. The combined extracts were washed with cold water and dried oyer magnesium sulphate. The solvent was remosed in vocto and the residual oil was chromatographed on silica gel to give $11.8 \mathrm{~g}(93 \%)$ of 2-biphenylyl acctate (1d): ${ }^{l} \mathrm{H}$ NMR ($300 \mathrm{MH} \angle . \mathrm{CDCl}_{3}$) : $\delta 2.12$ (s. 3 H). $7.19(\mathrm{dd} . J=8.0 .1 .2 \mathrm{H} / .1 \mathrm{H}) 7.35 \sim 7.47(\mathrm{~m} .8 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MH} \not, . \mathrm{CDCl}_{\mathrm{j}}$): $\delta 21.3,123.2 .126 .9 .127 .9$, 128.7. 129.0. 129.3. 131.3. 135.3. 138.0. 148.2, 169.9. IR (ncat) $1760 \mathrm{~cm}^{-1}$. GC-MS: $m e$ 212. 170. 169. 141. 139. 115. HRMS (El') Calc. For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}: 212.0837$. Found 212.0837
lrradiation of phenyl acetate (1a) with phenol-ds. A solution of $141 \mathrm{mg}(1.04 \mathrm{mmol})$ of 1 a and 38 mg (0.38 mmol) of phenol-d in methanol (26.0 mL) was transferred into a quart/ cell and degassed with purified nitrogen. The sample was irradiated with Hg -Arc lamp (450 W. medium pressure) for 15 h . The solyent was then craporated in vocto to obtain yellow liquid. Silica gel chromatography gave 15 mg (23%) of phenol. 35 mg of a mixture of 2 -hydroxyacctophenone (2) and 2-hydroxyacetophenonc-d d_{4} (4) (mixture 1). 34 mg of a mixture of 4 -hydroxyacetophenone (3) and 4 -hydroxyacetophenone-d $\mathrm{d}_{4}(5)$ (mixture II). and 46 mg of recovered starting material (67% conversion). Since the mistures of deuterated and non-deuterated photoproducts were not separated by silica gel chromatography. the composition of the mixtures were analyed by ${ }^{1} \mathrm{H}$ NMR and (or) mass spectral abundance of a particular peak. Spectral analyses showed that the mixture I contained $34 \mathrm{mg}(35.7 \%)$ of 2 and $0.7 \mathrm{mg}(0.7 \%)$ of 4 . Mixture II contained 33 mg (34.6 $\%$) of 3 and $1.1 \mathrm{mg}(1.1 \%)$ of 5 . Spectral data for 4 : ${ }^{1}$ H NMR ($300 \mathrm{MH} \not \ldots \mathrm{CDCl}_{3}$): $\delta 2.53(\mathrm{~s} .3 \mathrm{H}) .12 .17$ (s. 1 H). ${ }^{13} \mathrm{C}$ NMR (300) MHz. CDCl_{3}): $\delta 27.0 .118 .4$. 118.8. 120.0. 130.7. 136.0. 162.7. 204.9. GC-MS: me 140. 125. 97. 69. Spectral data for 5: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \neq \mathrm{CDCl}_{3}$): $\delta 2.50(\mathrm{~s} .3 \mathrm{H}) .8 .30$ (s. 1H). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MH} \not 2 . \mathrm{CDCl}_{3}$): $\delta 26,7.115 .5 .130, \mathrm{I}$. 130.6. 161.3. 198.4. GC-MS: me 140. 125.97.69.

Irradiation of phenyl-ds acetate (1b) with phenol. A solution of 78 mg (0.55 mmol) of 1 b and $21 \mathrm{mg}(0.22 \mathrm{mmol})$ of phenol in methanol (18.0 mL) was transferred into a quart\% cell and degassed with purified nitrogen. The sample was irradiated with Hg -Are lamp for 15 h . The solvent was then removed in vacuo to obtain a pale vellow oil. Silica gel chromatography and quantitative spectral antyses gave 11 $\mathrm{mg}(27 \%)$ of phenol-d. $0.9 \mathrm{mg}(1.7 \%)$ of $2.1 .4 \mathrm{mg}(2.6 \%)$ of $3.18 \mathrm{mg}(32 \%)$ of $4.17 \mathrm{mg}(30 \%)$ of 5 and 22 mg of recovered starting matcrial (72% conversion).

Irradiation of 2,6 -dimethylphenyl acetate (1c) with phenol. A solution of $71 \mathrm{mg}(0.43 \mathrm{mmol})$ of 1 c and 15.0 mg (0.16 mmol) of phenol in methanol (17 mL) was transferred into a quartz cell and degassed with purified nitrogen. The sample was irradiated with Hg -Are lamp for 12 h . After craporation of the solvent. silica gel chromatography and quantitative spectral analyses gave 6.8 mg (23%) of 2.6 dimethylphenol. 7.0 mg (18%) of 3.5 -dimethyl-4-hydroxyacctophenone. $\operatorname{trace}(0.5 \%)$ of 2 . $\operatorname{trace}(2.1 \%)$ of 3 and 3]
mg of starting material (56% conversion). Spectral data for 3.5-dimethyl-4-hy droxyacetophenonc: ${ }^{1}$ H NMR (300 MHz . CDCl_{3}): $\delta 2.3(\mathrm{~s} .6 \mathrm{H}) .2 .6(\mathrm{~s} .3 \mathrm{H}) .5 .2(\mathrm{~s} .1 \mathrm{H}) .7 .7(\mathrm{~s} .2 \mathrm{H})$. ${ }^{13}$ C NMR ($300 \mathrm{MH} \neq . \mathrm{CDCl}_{3}$): $\delta 16.3,26.7,123.3,130.0$. 130.1. 157.2. 197.9. IR (ncat) $3600.1670 \mathrm{~cm}^{-1}$. MS: $m e$ 164. 149. 121.91. 77.

Irradiation of 2-biphenylyl acetate (1d). A solution of 283 mg of 1 d in 106 mL of ethanol was transferred into 5 quart $/$ cells and degassed with purilied nitrogen. The sample was irradiated with 16 RPR 254 nm lamps for 5 h . After cuaporation of the solyent. silica gel chromatography gave 38 mg (13.4%) of 2-hydroxy-3-phenyl acetophenone (6). 20 mg (7.1\%) of 4-hydroxy-3-phenyl acctophenonc (7) and 48 mg (21%) ol 2-phenylphenol. Spectral data for $6:^{\prime} \mathrm{H}$ NMR $\left(300 \mathrm{MH} \neq \mathrm{CDCl}_{3}\right): \delta 2.71(\mathrm{~s} .3 \mathrm{H}) .7 .(2 \sim 7.8(\mathrm{~m} .8 \mathrm{H}) .12 .9$ (s. $1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MH} \% \mathrm{CDCl}_{3}$): $\delta 27.4,119.2 .120 .2 .127 .9$. 128.6. 129.8. 130.5. 131.6. 137.4. 137.7. 160.2. 205.4. IR (neat) $3200,1640 \mathrm{~cm}^{-1}$. MS: m e 212. 197, 141, 115, 98, 63 . 43. Spectral data for 7 : ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \neq \mathrm{CDCl}_{3}$): $\delta 2.60$ (s. 3H). 5.85 (s. 1H). $7.05 \sim 7.9+(\mathrm{m} .8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 $\left.\mathrm{MH} \not . . \mathrm{CDCl}_{3}\right): \delta 26.9$. 116.3. 128.5. 128.9. 129.5. 129.9. $130.5 .130 .9 .131 .7 .136 .3 .157 .3,197.4, \mathrm{IR}\left(\mathrm{CCl}_{4}\right): 3550$. $3300.1680 \mathrm{~cm}^{-1}$. MS: me 212 . 197. 168. $1+1.115 .98 .43$.

Irradiation of +biphenylyl acetate (1e). A solution of 123 mg of 1 e in 46 mL of cthanol was transferred into 2 quart cells and degassed with purified nitrogen. The samples were irradiated with IG RPR 254 nm lamps for 4 h . The solvent was then cyaporated in vacuo and the residue was scparated by silica gel chromatography to give 75 mg (61\%) of 2-hydroxy-5-phenyl accophenone (9) and 35 mg (35%) of 4-pheny lphenol. Spectral data for 9: ${ }^{\text {' }} \mathrm{H}$ NMR ($300 \mathrm{MH} \%$. $\left.\mathrm{CDCl}_{3}\right): \delta 2.72(\mathrm{~s} .3 \mathrm{H}) .7 .07 \sim 7.94(\mathrm{~m} .8 \mathrm{H}) .12 .3(\mathrm{~s} .1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (300) MHz. CDCl_{3}): $\delta 27.0 .119 .3$. 120.2. 127.1. 127.7. 129.4. 132.6. 135.6. 140.3. 162.3. 205.1. IR (CCl4): 350(0) 2800. $1640 \mathrm{~cm}^{-1}$. MS: me 212. 197. 169. 141. 139. 115.99. 84. 63.43.

Acid catalyzed Fries reaction of +-biphenylyl acetate (1 e). A mixture of 1 e ($2 . \mathrm{lg} .10 \mathrm{mmol}$) and aluminum trichloride (1.5 g) in 1.1 .2 .2 -tctrachlorocthane (15 mL) was stirred at $140{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with 10%-hydrochloric acid (20 mL) and extracted with chloroform several times. The combined chloroform solution was extracted with 10%-aqucous sodium hydroxide. The extracts were acidified by 10%-hydrochloric acid and extracted with dictylether. The ether layer was dried over magnesium sulphate and the solvent was removed in vactuo. The residual liquid was chromatographed on silica gel to obtain 0.3 g ($1.42 \mathrm{mmol} .14 \%$) of $9.0 .13 \mathrm{~g}(0.76 \mathrm{mmol} .7 .6 \%)$ of 4 -phenylphenol and $9 \mathrm{mg}(0.035 \mathrm{mmol} .0 .35 \%)$ of $11:^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz} . \mathrm{CDCl}_{3}$) $: \delta 2.66(\mathrm{~s} .3 \mathrm{H}) .2 .74(\mathrm{~s} .3 \mathrm{H}) .7 .12 \sim 8.05(\mathrm{~m}$. $7 \mathrm{H}) .12 .35(\mathrm{~s} . \mathrm{IH})$. IR (ncat): $3600\left(3100.1690 .1650 \mathrm{~cm}^{-1}\right.$. GC-MS: m/e 254. 239. 168. 139. 112.98. 84. 63.

Irradiation of 2-hiphenylyl acetate (1d) with 4 -phenylphenol. A solution of 631 mg of 1 d and 131 mg of $4-$ phenylpnenol in 152 mL of ethanol was transferred into 10 quart\% cells and degassed with purificd mitrogen. The samples were irradiated with 16 RPR 254 nm lamps for 12 h .

The solvent was evaporated in vocto and the residuc was scparated by silica gel chromatography to obtain 66 mg (10.5%) of $6.38 \mathrm{mg}(6 \%)$ of $7.173 \mathrm{mg}(34.5 \%)$ of 2 -phenylphenol and 5 mg of starting material ($(9) \%$ conversion). The crossoler products. $8(6 \mathrm{mg} .1 \%)$ and $\mathbf{1 e}(1 \mathrm{mg} .0 .16 \%)$ were also obtained.

Results and Discussion

Phenol effect on the photochemistry of phenyl acetates (1a, 1e). Since the phenol which is the most common by-product of photo-Fries reaction might react with acyl radical to give crossoler Fries-product. phenyl acetate (1i) was irradiated under presence of phenol-ds to distinguish the crossoyer products from the common Fries-rearranged products (Eq. (1)). As expected. crossover products 4 and 5 were oblained as minor product under presence of phenol-d.

Irradiation of phenyl-d acetate (1b) under presence of phenol also gave the crossover products (2.3). and the relative yields of the crossover products were slightly increased (Eq. (2)) (Table 1).

Recently Haruo Shizuka 8 reported that 1.3 -sigmatropic hydrogen shift of photo-Fries reaction by Laser Flash photolysis showed kinclic isotope effect ($k_{\mathrm{II}} / k_{\mathrm{D}}=3.8$). This isotope effect was thought to increase the relative yields of the crossover products. 2 and 3.
lrradiation of 2.6-dimethyl acctate (1c) under presence of
phenol did not increase the relative yields of the crossover products (2.3) as much as expected even though two ortho-

positions were blocked by methyl groups (Table 1).
The photo-Frics reaction of phenyl acetate is known to afford both ortho- and para- hydroxyacetophenone in addition to phenol. This is a singlet reaction that occurs through homolytic cleavage of the carbon-oxygen bond to give a caged radical pair. In-cage recombination affords the acy 1 migration products. while hydrogen abstraction by phenoxy radical leads to the formation of phenol. As the reaction proceeds. the concentration of phenol increases ($\sim 50 \%$. depends on the reaction condition.) and this phenol can be attacked by acyl radical to give the crossover products.

Photo-Frics reaction of biphenylyl acetates (1d, 1e). The photolysis of biphenylyl acetates were undertaken in order to investigate the possibility of acyl transfer not only to ortho- and para-position but also to carbon-2' and ' $^{\prime}$ position. Irradiation of 2-biphenylyl acctate (1d) gave the common Frics-product 6 (13.4%) and 7 (7.1\%) in addition to 2 phenylphenol (1\%). The products 8 from acyl transfer to carbon-2' or (and) 4^{\prime} position. however. were not obtained (Eq. (4)).

Imadiation of 4-biphenylyl acetate (1e) produced a common Frics-product 8 (61%) and 4 -phenylphenol (35%). The product. $\mathbf{1 0}$ from acyl transfer to carbon-2' or (and) 4' position was not obtained (Eq. (5)) presumably duc to restricted geometry of an intemediate 12 at the irradiation temperature ($40{ }^{\circ} \mathrm{C}$). However. reaction of 1 c with aluminum trichloride at $140^{\circ} \mathrm{C}$ produced 11 .

In thermal Fries-reaction of 1 c . high temperature ($140^{\circ} \mathrm{C}$) of the reaction media might overcome the unfavorabole gcometry of 12

Phenol cffect on the photochemistry of 2-biphenylyl acetate (1d). Irradiation of $\mathbf{1 d}$ under presence of 4-phenylphenol afforded the common Frics-products 6 and 7 in addition to crossover product 9 (Eq. (6)).

The "Trivial" mechanism for the photo-Fries reaction. Since the photo-Fries reaction is always accompanied by the fomation of phenol or phenol derivatives. these phenol effects on the photo-Fries reaction were examined with added phenol which gives crossover product.

As Fries reaction procecds. the concentration of phenol

Table 1. Relative yields of photo-Fries products (common ws crossover)

	Relative vields (\%)				
Fintry					
		ortho-		para-	
		common	crossover	common	crossover
\mathbf{l}	$\mathbf{1 a}$	98	2	97	3
2	$\mathbf{1 b}$	94.7	5.3	91.3	8.7
3	1c	94.5	5.5	88.3	11.7
4	1d	93.9	6.1	-	-

increases and this phenol reacts intermolecularly with acyl radical to alford Fries-product which cannot be distinguished from the common Fries-product. This undistinguishable crossover products are not negligible even though the contribution is small. because the crossover products are produced by mechanistically different process from the common Frics-rcaction mechanim. This minor contribution (2~12\%) (Table 1) to the photo-Fries reaction is suggested as the "Trivial" mechanism.

Acknowledgment. This work was supported by Korea Rescarch Foundation Grant (KRF-9)-041-D00226-D3000)

References

1. Itorspool, W. M.: Song, P. S. Oryomic Photochemistyy and Photobiolog: CRC Press: New York, 1995: p 570
2. Ko, S. I.: Chae, W. K. Bull. Noreom Chem. Soc. 1988, 19, 513.
3. Ito, T.: Minura, Y.: Kadokawa, I.: Hori, S.: Shimada, J:: Mivahara, I. Pharmacology \& Toxicology 1991, 68, 220.
4. 7hi. T.: Nightingale. C. H. Pharmacology \& Toxicolog. 1993. 73. 285.
5. Das S.: Muneer. M.: Gopidas. K. R. J. Photochem. Phtobiol. A: Chem. 1994. 77. 83.
6. Timenz: M. C : I cal, P: Miranda, M. A: Tomors, R. J. (Whem. Soc., (hem. Commun. 1995. 2009
7. Khama, R. N.: Singh, K. P.: Shama, J. Org. Preparations and Irocedures, International 1992, 24, 687.
8. Arai, I.: Iobita, S.: Shizuka, II. J. .im. Chem. Soc. 1995. 117, 3986.
