• 제목/요약/키워드: Phenotypic analysis

검색결과 508건 처리시간 0.036초

Respiratory Reviews in Asthma 2013

  • Kim, Tae-Hyung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제76권3호
    • /
    • pp.105-113
    • /
    • 2014
  • From January 2012 up until March 2013, many articles with huge clinical importance in asthma were published based on large numbered clinical trials or meta-analysis. The main subjects of these studies were the new therapeutic plan based on the asthma phenotype or efficacy along with the safety issues regarding the current treatment guidelines. For efficacy and safety issues, inhaled corticosteroid tapering strategy or continued long-acting beta agonists use was the major concern. As new therapeutic trials, monoclonal antibodies or macrolide antibiotics based on inflammatory phenotypes have been under investigation, with promising preliminary results. There were other issues on the disease susceptibility or genetic background of asthma, particularly for the "severe asthma" phenotype. In the era of genome and pharmacogenetics, there have been extensive studies to identify susceptible candidate genes based on the results of genome wide association studies (GWAS). However, for severe asthma, which is where most of the mortality or medical costs develop, it is very unclear. Moreover, there have been some efforts to find important genetic information in order to predict the possible disease progression, but with few significant results up until now. In conclusion, there are new on-going aspects in the phenotypic classification of asthma and therapeutic strategy according to the phenotypic variations. With more pharmacogenomic information and clear identification of the "severe asthma" group even before disease progression from GWAS data, more adequate and individualized therapeutic strategy could be realized in the future.

돌연변이 불면잠$(nm^n)$ 의 불면형질의 발현 (Phenotypic Expression of the Non Molting Gene in The 'Non-molting of Nho' of Bombyx mori)

  • 유현주;노시갑
    • 한국잠사곤충학회지
    • /
    • 제35권2호
    • /
    • pp.93-99
    • /
    • 1993
  • 새로운 돌연변이 불면잠 nmn에 대한 조직학적 관찰 및 생리 생화학적 분석 결과를 요약하면 다음과 같다. 부화 3일째가 되면 정상잠은 흉부가 흰색을 복부는 갈색을 나타내는데 비해 불면잠은 전체적으로 암갈색을 띠며 부화 7,8일경이 되면 대부분 치사한다. 잠기별 발현비율은 월년란에 비해 인공부화란에서 현저하게 높았으며 부화날짜별 불면잠의 발현비율은 3일동안 거의 비슷했다. 조직학적 관찰결과 불면잠의 탈피선은 정상잠의 그것에 비해 형태나 크기에 있어서 큰 차이를 나타냈으며 정상잠이 면중에 새로운 피부가 형성되는데에 비해 불면잠에서는 신피형성이 인정되지 않았다. 유충혈액중의 총단백질은 정상잠이 불면잠에 비해 훨씬 많았을 뿐만 아니라 질적으로도 수종의 단백직 성분에서 차이가 있는 것으로 나타났다.

  • PDF

Mapping of Quantitative Trait Loci for Salt Tolerance at the Seedling Stage in Rice

  • Lee, Seung Yeob;Ahn, Jeong Ho;Cha, Young Soon;Yun, Doh Won;Lee, Myung Chul;Ko, Jong Cheol;Lee, Kyu Seong;Eun, Moo Young
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.192-196
    • /
    • 2006
  • Salt tolerance was evaluated at the young seedling stage of rice (Oryza sativa L.) using recombinant inbred lines (MG RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). 22 of 164 MG RILs were classified as tolerant with visual scores of 3.5-5.0 in 0.7% NaCl. Interval mapping of QTLs related to salt tolerance was conducted on the basis of the visual scores at the young seedling stage. Two QTLs, qST1 and qST3, conferring salt tolerance, were detected on chromosome 1 and 3, respectively, and the total phenotypic variance explained by the two QTLs was 36.9% in the MG RIL population. qST1 was the major QTL explaining 27.8% of the total phenotypic variation. qST1 was flanked by Est12~RZ569A, and qST3 was flanked by RG179~RZ596. The detection of new QTLs associated with salt tolerance will provide important information for the functional analysis of rice salt tolerance.

Genetic and Phenotypic Diversity of (R/S)-Mecoprop [2-(2-Methyl-4- Chlorophenoxy)Propionic Acid]-Degrading Bacteria Isolated from Soils

  • Lim, Jong-Sung;Jung, Mee-Kum;Kim, Mi-Soon;Ahn, Jae-Hyung;Ka, Jong-Ok
    • Journal of Microbiology
    • /
    • 제42권2호
    • /
    • pp.87-93
    • /
    • 2004
  • Twelve mecoprop-degrading bacteria were isolated from soil samples, and their genetic and phenotypic characteristics were investigated. Analysis of 16S rDNA sequences indicated that the isolates were related to members of the genus Sphingomonas. Ten different chromosomal DNA patterns were obtained by polymerase-chain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences from the 12 isolates. The isolates were found to be able to utilize the chiral herbicide meco-prop as a sole source of carbon and energy. While seven of the isolates were able to degrade both (R)-and (S)-mecoprop, four isolates exhibited enantioselective degradation of the (S)-type and one isolate could degrade only the (R)-enantiomer. All of the isolates were observed to possess plasmid DNAs. When certain plasmids were removed from isolates MPll, MP15, and MP23, those strains could no longer degrade mecoprop. This compelling result suggests that plasmid DNAs, in this case, conferred the ability to degrade the herbicide. The isolates MP13, MP15, and MP24 were identified as the same strain; however, they exhibited different plasmid profiles. This indicates that these isolates acquired dif-ferent mecoprop-degradative plasmids in different soils through natural gene transfer.

RAPD Polymorphism and Genetic Distance among Phenotypic Variants of Tamarindus indica

  • Mayavel, A;Vikashini, B;Bhuvanam, S;Shanthi, A;Kamalakannan, R;Kim, Ki-Won;Kang, Kyu-Suk
    • 한국산림과학회지
    • /
    • 제109권4호
    • /
    • pp.421-428
    • /
    • 2020
  • Tamarind (Tamarindus indica L.) is one of the multipurpose tree species distributed in the tropical and sub-tropical climates. It is an important fruit yielding tree that supports the livelihood and has high social and cultural values for rural communities. The vegetative, reproductive, qualitative, and quantitative traits of tamarind vary widely. Characterization of phenotypic and genetic structure is essential for the selection of suitable accessions for sustainable cultivation and conservation. This study aimedto examine the genetic relationship among the collected accessions of sweet, red, and sour tamarind by using Random Amplified Polymorphic DNA (RAPD) primers. Nine accessions were collected from germplasm gene banks and subjected to marker analysis. Fifteen highly polymorphic primers generated a total of 169 fragments, out of which 138 bands were polymorphic. The polymorphic information content of RAPD markers varied from 0.10 to 0.44, and the Jaccard's similarity coefficient values ranged from 0.37 to 0.70. The genetic clustering showed a sizable genetic variation in the tamarind accessions at the molecular level. The molecular and biochemical variations in the selected accessions are very important for developing varieties with high sugar, anthocyanin, and acidity traits in the ongoing tamarind improvement program.

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo;Yongmin Cho;Junhyeok Choi;Jeongwook Lee;Yoobin Han;Sang-Wook Han
    • The Plant Pathology Journal
    • /
    • 제39권3호
    • /
    • pp.235-244
    • /
    • 2023
  • Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

Phenotypic Characterization of Amaranth Resources for the Selection of Promising Materials

  • Hwang Bae Sohn;Su Jeong Kim;Jung Hwan Nam;Do Yeon Kim;Jong Nam Lee;Su Young Hong;Yul Ho Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.211-211
    • /
    • 2022
  • Amaranth is a nutritious and broadly adapted seed crop in high demand around the world. A preliminary approach for understanding the genetics of amaranth resources entails a morphologic characterization, which can provide the basis for breeding the first variety in Korea, leading to satisfying the needs of farmers and consumers. Therefore, this study aimed to evaluate the phenotypic characteristics of ten genetic amaranth accessions for the selection of outstanding accessions in terms of yield and grain quality. A randomized complete block design was used, with fifteen replications for each accession under field conditions. Five quantitative and three qualitative descriptors were evaluated with descriptive analysis. The results showed that the accessions with plant heights smaller than the average (>112.7 cm) presented lower yields and smaller seed sizes, thus decreasing the grain quality. The cluster analyses established groups of accessions with good yields (>30.1 g of seeds per plant) and stable morphological characteristics. Based on yield and morphological descriptors, the proposed selection index indicated four accessions as potential parents for amaranth breeding programs in Kora.

  • PDF

Phenotypic Characterization and Multivariate Analysis to Explain Body Conformation in Lesser Known Buffalo (Bubalus bubalis) from North India

  • Vohra, V.;Niranjan, S.K.;Mishra, A.K.;Jamuna, V.;Chopra, A.;Sharma, Neelesh;Jeong, Dong Kee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권3호
    • /
    • pp.311-317
    • /
    • 2015
  • Phenotypic characterization and body biometric in 13 traits (height at withers, body length, chest girth, paunch girth, ear length, tail length, length of tail up to switch, face length, face width, horn length, circumference of horn at base, distances between pin bone and hip bone) were recorded in 233 adult Gojri buffaloes from Punjab and Himachal Pradesh states of India. Traits were analysed by using varimax rotated principal component analysis (PCA) with Kaiser Normalization to explain body conformation. PCA revealed four components which explained about 70.9% of the total variation. First component described the general body conformation and explained 31.5% of total variation. It was represented by significant positive high loading of height at wither, body length, heart girth, face length and face width. The communality ranged from 0.83 (hip bone distance) to 0.45 (horn length) and unique factors ranged from 0.16 to 0.55 for all these 13 different biometric traits. Present study suggests that first principal component can be used in the evaluation and comparison of body conformation in buffaloes and thus provides an opportunity to distinguish between early and late maturing to adult, based on a small group of biometric traits to explain body conformation in adult buffaloes.

Paraquat-resistant lines in Pisum sativum cv. Alaska: biochemical and phenotypic characterization

  • Haque, Md. Emdadul;Yoshida, Yusuke;Hasunuma, Kohji
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.21-31
    • /
    • 2008
  • In plants, the oxygen generated by photosynthesis can be excited to form reactive oxygen species (ROS) under excessive sunlight. Excess ROS including singlet oxygen ($^1O_2$) inhibit the growth, development and photosynthesis of plants. To isolate ROS-resistant crop plants, we used paraquat (PQ), a generator of $O_2{^-}$ as a source of screening and mutagen, and obtained two PQ-resistant lines in Pisum sativum, namely R3-1 and R3-2. Both lines showed greater resistance to PQ than their wild type (WT) siblings with respect to germination, root growth, and shoot growth. Biochemical analysis showed differences in these lines, in which ROS-scavenging enzymes undergo changes with a distinguishable increase in Mn-SOD. We further observed that the cytosolic catalases (CATs) in leaves in both lines were shifted in a native-PAGE analysis compared with that of the WT, indicating that the release of bound $^1O_2$ was enhanced. Phenotypic analysis revealed distinguishable differences in leaf development, and in flowering time and position. In addition, R3-1 and R3-2 showed shorter individual inter-node lengths, dwarf plant height, and stronger branching compared with the WT. These results suggested that PQ-induced ROS-resistant Pisum have the potential pleiotropic effects on flowering time and stem branching, and that ROS including $^1O_2$ plays not only important roles in plant growth and development as a signal transducer, but also appears as a strong inhibitor for crop yield.

Univariate and Multivariate Analysis of Phenotypic Traits in Mung Beans Reveals Diversity Among Korean, Indian, and Chinese Accessions

  • Kebede Taye Desta;Young-ah Jeon;Myoung-Jae Shin;Yu-Mi Choi;Jungyoon Yi;Hyemyeong Yoon
    • 한국자원식물학회지
    • /
    • 제37권3호
    • /
    • pp.270-306
    • /
    • 2024
  • This study investigated the diversity of 323 mung bean accessions from Korea, China, and India, along with six cultivars, using 22 agronomical traits. The standardized Shannon-Weaver index (H') for the qualitative traits ranged from 0.11 (terminal leaflet shape) to 0.98 (pubescence density of pod). Likewise, the coefficient of variation for the quantitative traits ranged from 8.76% (days to maturity (DM)) to 79.91% (lodging rate (LR)), indicating a wide genetic variance. Hypocotyl color, pod color, seed shape, and seed coat surface lust showed different distributions among Korean, Indian, and Chinese accessions. Chinese accessions had the highest average germination rate, DM, days from flowering to maturity, and one-hundred seeds weight, followed by Korean and Indian accessions, while the number of seeds per pod (SPP) displayed the opposite trend, with all except SPP showing significant variation (p < 0.05). Similarly, plant height, days to flowering, and number of pods per plant increased in the order of India > Korea > China, with LR showing the opposite trend (p < 0.05). The mung bean accessions were grouped into four major clusters using hierarchical cluster analysis supported by principal component analyses, and all of the quantitative traits showed significant variations between the clusters (p < 0.05). Generally, the mung bean accessions investigated in this study exhibited wide phenotypic trait variations, which could be beneficial for future genomics studies. Moreover, this study identified 77 accessions that outperformed the controls. Consequently, these superior accessions could provide a wide spectrum of options during the development of improved mung bean varieties.