DOI QR코드

DOI QR Code

RAPD Polymorphism and Genetic Distance among Phenotypic Variants of Tamarindus indica

  • Mayavel, A (Institute of Forest Genetics and Tree Breeding, Forest Campus) ;
  • Vikashini, B (Institute of Forest Genetics and Tree Breeding, Forest Campus) ;
  • Bhuvanam, S (Institute of Forest Genetics and Tree Breeding, Forest Campus) ;
  • Shanthi, A (Institute of Forest Genetics and Tree Breeding, Forest Campus) ;
  • Kamalakannan, R (Institute of Forest Genetics and Tree Breeding, Forest Campus) ;
  • Kim, Ki-Won (Department of Agriculture, Forestry, and Bioresources, Seoul National University) ;
  • Kang, Kyu-Suk (Department of Agriculture, Forestry, and Bioresources, Seoul National University)
  • Received : 2020.09.29
  • Accepted : 2020.11.19
  • Published : 2020.12.31

Abstract

Tamarind (Tamarindus indica L.) is one of the multipurpose tree species distributed in the tropical and sub-tropical climates. It is an important fruit yielding tree that supports the livelihood and has high social and cultural values for rural communities. The vegetative, reproductive, qualitative, and quantitative traits of tamarind vary widely. Characterization of phenotypic and genetic structure is essential for the selection of suitable accessions for sustainable cultivation and conservation. This study aimedto examine the genetic relationship among the collected accessions of sweet, red, and sour tamarind by using Random Amplified Polymorphic DNA (RAPD) primers. Nine accessions were collected from germplasm gene banks and subjected to marker analysis. Fifteen highly polymorphic primers generated a total of 169 fragments, out of which 138 bands were polymorphic. The polymorphic information content of RAPD markers varied from 0.10 to 0.44, and the Jaccard's similarity coefficient values ranged from 0.37 to 0.70. The genetic clustering showed a sizable genetic variation in the tamarind accessions at the molecular level. The molecular and biochemical variations in the selected accessions are very important for developing varieties with high sugar, anthocyanin, and acidity traits in the ongoing tamarind improvement program.

Keywords

References

  1. Algabal, AQAY., Papanna, N. and Simon, L. 2011. Amplified fragment length polymorphism marker-based genetic diversity in tamarind (Tamarindus indica L.). International Journal of Fruit Science 11(1): 1-16. https://doi.org/10.1080/15538362.2010.529789
  2. Bhat, K.V. 2002. Molecular data analysis. In: Proceedings of the short-term training course on molecular marker application in plant breeding. Sept. 26-Oct. 5, 2002, ICAR, New Delhi.
  3. Champion, H.G. and Seth, S.K. 1968. A revised survey of the forest types of india. manager of publication, Government of India, New Delhi, India.
  4. Chesnokov, Y.V. and Artemyeva, A.M. 2015. Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology 50(5): 571-578 doi: 10.15389/agrobiology.2015.5.571eng
  5. Dhanraj, A.L., Rao, E.V.V.B., Swamy, K.R.M., Bhat, M.G., Prasad, T. and Sodur, S.N. 2002. Using RAPDs to assess the diversity in Indian cashew (Anacardium occidentale L.) germplasm. Journal of Horticultural Science and Biotechnology 77(1): 41-47. https://doi.org/10.3389/fpls.2016.01195
  6. Divakara, B.N. 2008. Variation and character association for various pod traits in Tamarindus indica L. Indian Forester 134(5): 687-696.
  7. Engels, J.M.M. and Ramanatha, R.V. 1998. Regeneration of seed crops and their wild relatives. Proceedings of a Consultation Meeting, 4-7 December 1995, ICRISAT, Hyderabad, India. pp. 167.
  8. Fitriana, N. and Chinawat, Y. 2017. Clustering of five sweet tamarind based on fruit characteristic. AGRIVITA Journal of Agricultural Science 39(1): 38-44. http://dx.doi.org/10.17503/agrivita.v39i1.857
  9. Gangaprasad, S., Rajkumar, R.L., Ravikumar, K. and Hittalamani, S. 2013. Genetic diversity analysis in tamarind (Tamarindus indica L.). Journal of Spices and Aromatic Crops 22(1): 55-61. www.indianspicesociety.in/josac/index.php/josac
  10. Government of India. 2018. Horticultural Statistics at a Glance 2018. pp. 215.
  11. Jaccard, P. 1901. Comparative study of floral distribution in a portion of the Alps and the Jura. Bulletin de la Societe evaudoise des sciences naturelles 374: 547-579. https://doi.org/10.1007/s00442-008-1190-z
  12. Keiding, H., Wellendorf, H. and Lauridsen, EB. 1986. In: Evaluation of international series of teak provenance trials. DANIDA Forest seed center, Humleback, Denmark, pp. 81.
  13. Keil, M. and Griffin, A.R. 1994. Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus. Theoretical and Applied Genetics 89(4): 442-450. https://doi.org/10.1007/BF00225379
  14. Kumar, M., Ponnuswami, V., Rajamanikkam, C. and Preethi, T.L. 2015. Assessment of genetic diversity in tamarind (Tamarindus indica L.) using random amplified polymorphic DNA markers. SAARC Journal of Agriculture 13(1): 27-36. https://doi.org/10.3329/sja.v13i1.24177
  15. Lewis, E. 1992. Identification of avocado cultivars with RAPD markers. Information Bulletin Institute for Tropical and Subtropical Crops 241: 7-9
  16. Mayavel, A., Muthuraj, K., Nagarajan, B. and Prabhu, R. 2018. Genetic variability studies in selected clones of red tamarind (Tamarindus indica var rhodocrpha) for Yield and Quality Traits International Journal of Pure and Applied Bioscience 6(4): 174-180. https://doi.org/10.18782/2320-7051.6211
  17. Mishra RN. 1997. Tamarindus indica L.: An overview of tree improvement, proceedings of National Symposium on Tamarindus indica L. 27-28 June, Tirupathi (A.P.), organized by Forest Department of Andra Pradesh, 51-8.
  18. Morales, R.G.F., Resende, J.T.V., Faria, M.V., Andrade, M.C., Resende, L.V., Delatorre, C.A. and Silva, P.R. 2011. Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers. Scientia Agricola 68(6): 665-670. https://doi.org/10.1590/S0103-90162011000600010
  19. Prakash, D.P., Narayanaswamy, P., Sondur, S.N. 2002. Analysis of molecular diversity in guava using RAPD markers. Journal of Horticultural Science and Biotechnology 77(3): 287-293. https://doi.org/10.1080/14620316.2002.11511494
  20. Purseglove, J.W. 1987. Tropical crops. Dicotyledons, Longria, Science and Technology, pp. 204-206.
  21. Rahman, M.M, Rahman, L., Begum, S.N. and Nur, F. 2009. Molecular characterization and genetic diversity study in F3 population of rice. Progress. Agric., 20: 1-8.
  22. Ravishankar, K.V., Anand, L. and Dinesh, M.R. 2000. Assessment of genetic relatedness among mango cultivars of India using RAPD markers. Journal of Horticultural Science and Biotechnology 75(2): 198-201. https://doi.org/10.1080/14620316.2000.11511223
  23. Rohlf, F.J. 1998. NTSYSpc: Numerical Taxonomy and multivariate Analysis System Version 2.0 User guide. Applied Biostatistics Incorporate. Setauket, New York. pp. 37.
  24. Shankaracharya, N.B. 1998. Tamarind: Chemistry, Technology and Uses-A critical appraisal. Journal Food Technology 35(3): 193-208. http://ir.cftri.com/id/eprint/7777
  25. Sharma, D.K., Alkade, S.A. and Virdia, H.M. 2015. Genetic variability in tamarind (Tamarindus indica L.) in South Gujarat. Current Horticulture 3(2): 43-46.
  26. Shimida, T., Hayama, T., Haji, T., Yamaguchi, M. and Yoshida, M. 1999. Genetic diversity of plums characterized by RAPD analysis. Euphytica 109: 143-147. https://doi.org/10.1023/A:1003728201100
  27. Sneath, P.H.A., Sokal, R.R. and Freeman, W.H. 1975. Numeric taxonomy: The principles and practice of numerical classification. Society of Systematic Biologists 24(22): 63-268. http://doi.org/10.1111/j.1095-8312.1971.tb00174.x
  28. Williams, J.G., Kublelik, A.R., Livak, K.J., Raflaski, J.A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18(22): 6531-6535. https://dx.doi.org/10.1093%2Fnar%2F18.22.6531 https://doi.org/10.1093%2Fnar%2F18.22.6531