DOI QR코드

DOI QR Code

Changes in Hydrological Characteristics of a Forested Watershed of Mt. Palgong

팔공산 산림소유역의 유출 특성 변화

  • Jung, Yu-Gyeong (Department of Forest Resource, Yeungsam University) ;
  • Lee, Ki-Hwan (Department of Forest Resource, Yeungsam University) ;
  • Choi, Hyung-Tae (Division of Resource Management and Restoration, National Institute of Forest Science) ;
  • Lee, Heon-Ho (Department of Forest Resource, Yeungsam University)
  • 정유경 (영남대학교 산림자원학과) ;
  • 이기환 (영남대학교 산림자원학과) ;
  • 최형태 (국립산림과학원 산림육성복원연구과) ;
  • 이헌호 (영남대학교 산림자원학과)
  • Received : 2020.06.02
  • Accepted : 2020.11.11
  • Published : 2020.12.31

Abstract

In this study we quantified the long-term change in discharge against precipitation in a forested watershed and investigated how the growth of forest trees influences these changes. We found a proportional relationship between precipitation and discharge for each year, and discharge decreased gradually with time. Precipitation and discharge were highest in July and August, and the changes in precipitation, discharge, and runoff rate did not always coincide, given that high runoff rate was shown in August and September. The monthly coefficient of variation (CV) for discharge was larger than that for precipitation, and the deviation between precipitation and discharge increased gradually. From 2011 to 2017, the gradient of the trend line for the change of total discharge and direct runoff against precipitation decreased, whereas the gradient of the base flow increased in this same time period. A possible explanation is that the water holding capacity of soil deposits increased as the forest soil of the Palgong Mountain watershed developed and the increase of base flow rose with groundwater level together with that of outflow quantity. The coefficient of flood recession was lower in the period 2011 to 2017 than in 2003 to 2010; thus, the reduction of discharge was mitigated and remained steady as time progressed. We conclude from these results that the discharge of surface runoff decreased as tree growth and base flow increased; however, the water yield function of the forest increased gradually.

본 연구는 산림 소유역에서 강우량에 대한 계류유출량의 장기적인 변화추이를 정량화하고, 임목의 생장이 산림소유역의 유출변화에 어떠한 영향을 미치는지를 파악하기 위하여 실시했다. 연도별로 강우량과 유출량은 비례관계를 보였으며, 시간이 경과할수록 유출량은 점차 감소하는 것으로 나타났다. 월별 강우량과 유출량은 7월과 8월에 가장 높았으며, 유출률은 8월과 9월에 높은 값을 보여 강우량과 유출량, 유출률 변화가 반드시 일치하지는 않았다. 월별 변동계수(CV)는 강우량에 비해 유출량이 더 크게 나타났고, 강우량과 유출량 간의 편차는 점차 증가하였다. 강우량에 대한 총 유출량과 직접 유출량의 변화는 2011년~2017년의 추세선의 기울기가 더 낮아졌고, 기저유출량의 기울기는 증가하였다. 산림토양이 발달하면서 토양층의 수분보유력이 증가하였기 때문으로 보여지며, 기저유출량의 증가는 팔공산 산림소유역의 유출수량 증가와 함께 지하수위 상승에 영향을 줄 것으로 판단된다. 감수곡선의 기울기는 2003년~2010년에 비해 2011년~2017년이 더 낮은 것으로 나타났고, 시간이 경과함에 따라 유출량의 감소가 완화되고 유출량이 일정하게 유지되었다. 따라서 팔공산 산림소유역은 임목의 생장에 따라 지표류의 유출이 감소하고 기저유량이 증가하는 것으로 나타나, 산림의 수원함양기능이 점차 증가하는 것으로 나타났다.

Keywords

References

  1. Ali, G., Oswakd, C.J., Spence, C., Gammeraat, E.L.H., McGuire, K.J., Mexiner, T. and Reaney, S.M. 2013. Towards a unified threshold based hydrological theory: Necessary components and recurring challenges. Hydrological Processes 27(2): 313-318. https://doi.org/10.1002/hyp.9560
  2. Alvarenga, L.A., Mello, C.R., Colombo, A., Cuart, L.A. and Bowling, L.C. 2016. Assessment of land cover change on the hydrology of a Brazilian headwater watershed using the Distributed Hydrology Soil Vegetation Model. Catena 143: 7-17. https://doi.org/10.1016/j.catena.2016.04.001
  3. Andre, D., Jackson, A.A., Adriano, D.C., Patricia, P. and Franciani, R.S. 2013. Water retention and availability in soils of the state of Santa catarina-Brazil: Effect of textural classes, soil classes and lithology. Revista Brasileira de Ciencia do Solo 37(6): 1535-1548. https://doi.org/10.1590/S0100-06832013000600010
  4. Antoine, L.B. and David, J.S. 2006. Tree ring reconstructions of streamflow in the Churchill river basin, Northern Saskatchewan. Canadian Water Resources Association 31(4): 249-262. https://doi.org/10.4296/cwrj3104249
  5. Casermeiro, M.A., Molina, J.A., Caranaca, M.T., Costa, J.H., Massanet, M.I.H. and Moreno, P.S. 2004. Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate. Catena 57(1): 91-107. https://doi.org/10.1016/S0341-8162(03)00160-7
  6. Chung, I., Lee, J., Kim, J., Na, H. and Kim, N. 2011. Development of Threshold Runoff Simulation Method for Runoff Analysis of Jeju Island. Journal of the Environmental Sciences 20(10): 1347-1355. https://doi.org/10.5322/JES.2011.20.10.1347
  7. Coasta, F.R.C., Guillanmet, J.L., Lima, A. and Pereira, O. 2009. Gradients within gradients: The mesoscale distribution patterns of palms in a central Amazonian forest. Journal of Vegetation Science 20(1): 69-78. https://doi.org/10.1111/j.1654-1103.2009.05314.x
  8. Drucker, D.P., Costa, F.R.C. and Magnusson, W.E. 2008. How wide is the riparian zone of small streams in tropical forest? A test with terrestrial herbs. Journal of Tropical Ecology 24(1): 65-74. https://doi.org/10.1017/s0266467407004701
  9. Eunice, M.A., Rafael, D.N.R., Helba, A.Q.P., Jose, B.B. and Jaques, C.R.F. 2017. Hydrological responses of a Watershed to vegetation changes in a tropical semiarid region. Revista Caatinga, Mossori 31(1): 161-170.
  10. Farrick, K.K. and Brian, A.B. 2014. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment. Water Resources Research 50(12): 9236-9250. https://doi.org/10.1002/2014WR016045
  11. Grace, J.M., Skaggs, R.M. and Cassel, D.K. 2006. Soil physical changes associated with forest harvesting operations on an organic soil. Soil Science Society of America Journal 70(2): 503-509. https://doi.org/10.2136/sssaj2005.0154
  12. Green, R.T., Ahuja, L.R. and Benjamin, J.G. 2003. Advances and challenges in predicting agricultural management effects on soil hydraulic properties. Geoderma 116(1): 3-27. https://doi.org/10.1016/S0016-7061(03)00091-0
  13. Halliwell, D.J., Barlow, K.W. and Nash, D.M. 2001. A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems. Australian Journal Soil Research 39(6): 1259-1267. https://doi.org/10.1071/SR00047
  14. Hilker, T., Lyapustin, A.I., Tucker, C.J., Hall, F.G., Myneni, R.B., Wang, Y. and Sellers, P.J. 2014. Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences 111(45): 16041-16046. https://doi.org/10.1073/pnas.1404870111
  15. Jenicek, M., Seibert, J., Zappa, M., Staudinger, M. and Jonas, T. 2015. Importance of maximum snow accumulation for summer low flows in humid catchment. Hydrology and Earth System Sciences 12: 7023-7056.
  16. Jiao, Y., Lei, H., Yang, D., Huang, M., Liu, D. and Yuan, X. 2017. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surfacehydrology coupled model. Journal of Hydrology 551: 116-131. https://doi.org/10.1016/j.jhydrol.2017.05.060
  17. Jost, G., Schume, H., Hager, H., Markart, G. and Kohl, B. 2012. A hillslope scale comparison of tree species influence on soil moisture dynamics and runoff processes during intense rainfall. Journal of Hydrology 420(2): 112-124.
  18. K-water. 2019. Water for the Future. Proceeding of the world water day 2019, Academic Press, Seoul pp. 457.
  19. Lee, B., Choi, J., Choi, Y. and Bae, D. 2012. Validation of real-time river flow forecast using AWS rainfall data. Journal of Korea Water Resource Association 45(6): 607-616. https://doi.org/10.3741/JKWRA.2012.45.6.607
  20. Liu, J., Gao, G., Wang, S., Jiao, L., Wu, X. and Fu, B. 2018. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. Journal of Geographical Science 28(1): 59-78. https://doi.org/10.1007/s11442-018-1459-z
  21. Liu, R., Wang, J., Shi, J., Chen, Y., Sun, C. and Shen, Z. 2014. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Science of the Total Environment 468-(15): 1069-1077.
  22. Loaiciga, H., Haston, L. and Michaelsen, J. 1993. Dendrohydrology and long term hydrologic phenomena. Reviews of Geophysics 31(2): 151-171. https://doi.org/10.1029/93rg00056
  23. Jenicek, M., Seibert, J., Zappa, M., Staudinger, M. and Jonas, T. 2015. Importance of maximum snow accumulation for summer low flows in humid catchment. Hydrology and Earth System Sciences 12: 7023-7056.
  24. Magesan, G.N., Williamson, J.C., Sparling, G.P., Schipper, L.A. and Lloyd-Jones, A.R. 1999. Hydraulic conductivity in soils irrigated with wastewaters of differing strengths: field and laboratory studies. Australian Journal of Soil Research 37(2): 391-402. https://doi.org/10.1071/S98030
  25. Mamedov, A.I. 2002. Irrigation water quality, rain energy and soil texture effects on soil hydraulic properties and erosion. pp. 553-563. In: Rubio, J.L. Morgans, P.R.C. Asins, S. and Andred, V. Man and Soil at the Third Millennium. Geoforma Ediciones, Logrono, Spain.
  26. Munoz, R.C., Reid, N., Tighe, M., Briggs, S.N. and Wilson, B. 2011. Soil hydrological and erosional responses in patches and inter-patches in vegetation states in semiarid Australia. Geoderma 160(3): 524-534. https://doi.org/10.1016/j.geoderma.2010.10.024
  27. Naiman, R.J., Henri, D. and Decamps, H. 1997. The ecology of interfaces: Riparian zones. Annual review of Ecology and Systematics 28(1): 621-658. https://doi.org/10.1146/annurev.ecolsys.28.1.621
  28. National Institute of Forest Science. 2011. The research of hydrologic cycle on Forest watershed. pp. 393.
  29. Penna, D., Tromp-van, M., Gobbi, A., Borga, M. and Fontana, G.D. 2011. The influence of soil moisture on threshold runoff generation process in an alpine headwater catchment. Hydrology and Earth System Science 15(1): 689-702. https://doi.org/10.5194/hess-15-689-2011
  30. Shainberg, I., Levy, G.J. and Mamedov, A.I. 2002. Prewetting rate and sodicity effects on soil permeability and surface sealing. Acta Horticulture 573: 21-28. https://doi.org/10.17660/ActaHortic.2002.573.1
  31. Somorowaska, U. 2004. Inferring changes in dynamic groundwater storage from recession curve analysis of discharge data. Miscellanea Geographic 11(1): 161-168 https://doi.org/10.2478/mgrsd-2004-0018
  32. Stoelzle, K., Stahl, K. and Weiler, M. 2013. Are streamflow recession characteristics really characteristic? Hydrology and Earth System Science 17(1): 817-818. https://doi.org/10.5194/hess-17-817-2013
  33. Swank, W.T. Swift, L.W. and Douglass, J.E. 1988. Streamflow Changes Associated With Forest Cutting, Species Conversion, and Natural Disturbances. pp. 297-312. In: Forest Hydrology and Ecology at Coweeta. Ecological Studies, Swank, W.T. Crossley, D.A.(Ed.) Springer-Verlag, New York.