DOI QR코드

DOI QR Code

Effects of Initial Shoot, Root Length, and Acclimating Substrates on Survival Rate of Plantlets Regenerated from Somatic Embryos of Larix kaempferi

일본잎갈나무 체세포배 유래 식물체의 초기 신초와 뿌리 길이, 순화용 기질이 생존율에 미치는 영향

  • Lee, Na Nyum (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Yun, A Young (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Kim, Ji Ah (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Kim, Tae Dong (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Kim, Yong Wook (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Han, Sim Hee (Department of Forest Bio-resources, National Institute of Forest Science)
  • 이나념 (국립산림과학원 산림생명자원연구부) ;
  • 윤아영 (국립산림과학원 산림생명자원연구부) ;
  • 김지아 (국립산림과학원 산림생명자원연구부) ;
  • 김태동 (국립산림과학원 산림생명자원연구부) ;
  • 김용욱 (국립산림과학원 산림생명자원연구부) ;
  • 한심희 (국립산림과학원 산림생명자원연구부)
  • Received : 2020.08.10
  • Accepted : 2020.10.21
  • Published : 2020.12.31

Abstract

We analyzed the growth characteristics of each cell line and acclimating substrate of Larix kaempferi plantlets regenerated from somatic embryos, with the goal of increasing the survival rate during the acclimation phase. Somatic embryos from three embryogenic cell lines (L14-66, L16-18, and L17-B4) were used, and the acclimating substrates were commercial soils for Larix species (Larix-Soil) and horticultural corps (Hort-Soil), Elle-pot, and Peat-plug. The average initial shoot and root length was shortest in L14-66 and longest in L17-B4. The average survival rate by cell line was highest (87.0%) in L17-B4 and lowest (64.3%) for L14-66. Survival rates by substrate were highest in Elle-pot (88.5%) and Peat-plug (88.9%). The initial shoot length of the L14-66 plantlets was highly correlated with survival rates in the Larix-Soil (r = 0.852), Hort-Soil (r = 0.692), and Elle-pot (r = 0.867) substrates, but not in Peat-plug with high total nitrogen content. The initial shoot length of the L17-B4 plantlets was not correlated with the survival rate in any of the substrates. The initial root length of the L14-66 plantlets was highly related to survival rates in the Larix-Soil (r = 0.986), Elle-pot (r = 0.846), and Peat-plug (r = 0.802) substrates, and the survival rate of the plantlets was higher as the initial root length was longer. The initial root length of the L17-B4 plantlets was related to survival rate only in the Larix-Soil (r = 0.896) and Elle-pot (r = 0.696) substrates. In conclusion, to increase the survival rate of plantlets, root length should be considered over shoot length, and it is recommended to use substrates with high nitrogen content, such as Peat-plug, or to add fertilizer, during the acclimating process. In addition, in order to increase the survival rate, lines with high initial growth should be developed.

본 연구는 체세포배 발아 식물체의 세포 라인별, 순화용 기질별 생육 특성을 분석하여, 일본잎갈나무 조직 배양묘의 순화 중 생존율을 높이려는 방안을 마련하고자 실시하였다. 체세포배 발아 식물체는 라인 L14-66, L16-18, L17-B4를 사용하였으며, 순화용 기질은 낙엽송 전용 상토, 원예용 상토, 엘리포트, 피트플러그를 사용하였다. 평균 초기 신초와 뿌리 길이는 L14-66 라인이 가장 짧았고, L17-B4 라인이 가장 길었다. 세포 라인별 평균 생존율은 L17-B4 라인이 87.0%로 가장 높았고, L14-66 라인이 64.3%로 가장 낮았다. 순화용 기질별 생존율은 엘리포트와 피트플러그에서 각각 88.5%, 88.9%로 가장 높았다. L14-66 라인의 초기 신초 길이는 낙엽송 전용 상토(r = 0.852), 원예용 상토(r = 0.692), 엘리포트(r = 0.867)에서 생존율과 상관이 높았으나, 전 질소 함량이 높은 피트플러그에서는 상관이 없었다. L17-B4 라인의 초기 신초 길이는 모든 순화용 기질에서 생존율과 상관이 없었다. L14-66 라인의 초기 뿌리 길이는 낙엽송 전용 상토(r = 0.986), 엘리포트(r = 0.846), 피트플러그(r = 0.802)에서 생존율과 상관이 높았으며, 유식물체의 생존율은 초기 뿌리 길이가 길수록 높았다. L17-B4 라인의 초기 뿌리 길이는 낙엽송 전용 상토(r = 0.896)와 엘리포트(r = 0.696)에서만 생존율과 상관을 보였다. 결론적으로, 유식물체의 생존율을 높이기 위해서 신초 길이보다 뿌리 길이를 우선 고려해야 하며, 피트플러그와 같이 기질 내 질소 함량이 높은 재료를 사용하거나 순화 과정 중에 질소 시비를 높여 주는 것이 좋다. 또한, 생존율을 높이기 위해 초기 생장이 빠른 라인 개발도 함께 이루어져야 한다.

Keywords

References

  1. Bonga, J.M. and Pond, S.E. 1991. Adventitious shoot formation in cultures of 30-year-old Larix decidua, L. leptolepis, L. eurolepis and L. laricina trees. Plant Cell, Tissue and Organ Culture 26: 45-51. https://doi.org/10.1007/BF00116609
  2. Castro, M.R., Belo, A.F., Afonso, A. and Zavattieri, M.A. 2011. Micropropagation of Juniperus navicularis, and endemic and rare species from Portugal SW coast. Plant Growth Regulation 65(2): 223-230. https://doi.org/10.1007/s10725-011-9590-1
  3. Chen, J., Liu, L., Wang, Z., Zhang, Y., Sun, H., Song, S., Bai, Z., Lu, Z. and Li. C. 2020. Nitrogen fertilization increases root growth and coordinates the root-shoot relationship in cotton. Frontiers in Plant Science 11, Article 880: 1-13.
  4. Diner, A.M. 1995. Adventitious micropropagation of mature Larix decidua using dormant versus flushed axillary vegetative buds. New Forests 9(1): 61-65. https://doi.org/10.1007/BF00028926
  5. Ewald, D. 1998. Advances in tissue culture of adult larch. In Vitro Cellular & Developmental Biology Plant 34(4): 325-330. https://doi.org/10.1007/BF02822742
  6. Gomez, M.P. and Segura, J. 1996. Morphogenesis in leaf and single-cell cultures of mature Juniperus oxycedrus. Tree Physiology 16(8): 681-686. https://doi.org/10.1093/treephys/16.8.681
  7. Harry, I.S. and Thorpe, T.A. 1994. In vitro culture of forest trees. pp. 539-560. In: Vasil, I.K. and Thorpe, T.A., (Ed.) Plant Cell and Tissue Culture. Kluwer Academic Publishers: Dordrecht, The Netherlands.
  8. Hazubska-Przybyl, T. 2019. Propagation of Juniper species by plant tissue culture: A mini-review. Forests 10(11): 1-17. https://doi.org/10.3390/f10111028
  9. Kim, Y.W. and Moon, H.K. 2007. Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis). Plant Cell, Tissue and Organ Culture 88: 241-245. https://doi.org/10.1007/s11240-007-9202-y
  10. Kim, Y.W., Youn, Y., Noh, E.R. and Kim, J.C. 1999. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Japanese larch (Larix leptolepis). Plant Cell, Tissue and Organ Culture 55: 95-101. https://doi.org/10.1023/A:1006120302512
  11. King, J., Gay, A., Sylvester, B.R., Bingham, I., Foulkes, J., Gregory, P. and Robinson, D. 2003. Modelling cereal root systems for water and nitrogen capture: towards an economic optimum. Annal of Botany 91(3): 383-390. https://doi.org/10.1093/aob/mcg033
  12. Lee, J.N., Kim, H.J., Kim, K.D., Kwon, J.S., Yeoung, Y.R. and Lim, H.T. 2010. Appropriate in vitro culture conditions of growing medium for new ever-bearing strawberry 'Goha'. Korean Journal of Horticultural Science and Technology 28(6): 1051-1056.
  13. Loureiro, J., Capelo, A., Brito, G., Rodriguez, E., Silva, S., Pinto, G. and Santos, C. 2007. Micropropagation of Juniperus phoenica from adult plant explants and analysis of ploidy stability using flow cytometry. Biologia Plantarum 51: 7-14. https://doi.org/10.1007/s10535-007-0003-2
  14. Lu, Z., Li, L., Liu, Y. and Qi, L. 1991. Micropropagation in tissue culture of Dahurian Larch. Journal of Northeast Forestry University 2(1): 1-8. https://doi.org/10.1007/BF02874784
  15. Moon, H.K., Yoon, Y., Son, S.H., Lee, S.K. and Yi, J.S. 1993. In vitro shoot proliferation by pulse treatment from shoot cultures of Q. acutissima and ex vitro root induction using peat plug systems in Quercus spp. Journal of Korean Forest Society 82(3): 221-226.
  16. Ragonezi, C., Klimaszewska, K., Castro, M.R., Lima, M., de Oliveira, P. and Zavattieri, M.A. 2010. Adventitious rooting of conifers: Influence of physical and chemical factors. Trees 24(6): 975-992. https://doi.org/10.1007/s00468-010-0488-8
  17. Sas, L., Marschner, H., Romheld, V. and Mercik, S. 2003. Effect of nitrogen forms on growth and chemical changes in the rhizosphere of strawberry plants. Acta Physiologiae Plantarum 25: 241-247. https://doi.org/10.1007/s11738-003-0004-5
  18. Son, S.H. and Hall, R.B. 1993. Polyterra peat plug system for commercial-scale acclimatization of in vitro shoot cultures of hybrid aspen (Populus alba L. × P. grandidentata Michx.). Korean Journal of Breeding Science 25(3): 179-183.
  19. Vamerali, T., Ganis, A., Bona, S. and Mosca, G. 2003. Roots: the dynamic interface between plants and the earth. Netherlands: Springer, pp. 169-177.
  20. Wang, C.Y., Liu, W.X., Li, Q.X., Ma, D.Y., Lu, H.F., Feng, W., Xie, Y., Zhu, Y. and Guo, T. 2014. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Research 165(15): 138-149. https://doi.org/10.1016/j.fcr.2014.04.011
  21. Woodward, A.J., Bennett, I.J. and Pusswonge. S. 2006. The effect of nitrogen source and concentration, medium pH and buffering on in vitro shoot growth and rooting in Eucalyptus marginata. Scientia Horticulturae 110(2): 208-213. https://doi.org/10.1016/j.scienta.2006.07.005
  22. Zhang, X., Chen, S., Sun, H., Wang, Y. and Shao, L. 2009. Root size, distribution and soil water depletion as affected by cultivars and environmental factors. Field Crops Research 114(1): 75-83. https://doi.org/10.1016/j.fcr.2009.07.006