Mapping of Quantitative Trait Loci for Salt Tolerance at the Seedling Stage in Rice

  • Lee, Seung Yeob (Institute of Life Science and Natural Resources, Division of Plant Resources Science, Wonkwang University) ;
  • Ahn, Jeong Ho (Institute of Life Science and Natural Resources, Division of Plant Resources Science, Wonkwang University) ;
  • Cha, Young Soon (Rice Functional Genomics Team, National Institute of Agricultural Biotechnology) ;
  • Yun, Doh Won (Rice Functional Genomics Team, National Institute of Agricultural Biotechnology) ;
  • Lee, Myung Chul (Rice Functional Genomics Team, National Institute of Agricultural Biotechnology) ;
  • Ko, Jong Cheol (Gyehwado Substation, Honam Agricultural Research Institute, NICS, RDA) ;
  • Lee, Kyu Seong (Gyehwado Substation, Honam Agricultural Research Institute, NICS, RDA) ;
  • Eun, Moo Young (Rice Functional Genomics Team, National Institute of Agricultural Biotechnology)
  • Received : 2005.09.07
  • Accepted : 2006.02.02
  • Published : 2006.04.30

Abstract

Salt tolerance was evaluated at the young seedling stage of rice (Oryza sativa L.) using recombinant inbred lines (MG RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). 22 of 164 MG RILs were classified as tolerant with visual scores of 3.5-5.0 in 0.7% NaCl. Interval mapping of QTLs related to salt tolerance was conducted on the basis of the visual scores at the young seedling stage. Two QTLs, qST1 and qST3, conferring salt tolerance, were detected on chromosome 1 and 3, respectively, and the total phenotypic variance explained by the two QTLs was 36.9% in the MG RIL population. qST1 was the major QTL explaining 27.8% of the total phenotypic variation. qST1 was flanked by Est12~RZ569A, and qST3 was flanked by RG179~RZ596. The detection of new QTLs associated with salt tolerance will provide important information for the functional analysis of rice salt tolerance.

Keywords

Acknowledgement

Supported by : Crop Functional Genomics Center

References

  1. Akbar, M. and Yabuno, T. (1974) Breeding for saline-resistant varieties of rice. II. Comparative performance of some rice varieties to salinity during early developing stage. Jpn. J. Breed. 25, 176-181
  2. Cho, Y. G., McCouch, S. R., Kuiper, M., Kang, M. R., Pot, J., et al. (1998) Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor. Appl. Genet. 97, 370-380 https://doi.org/10.1007/s001220050907
  3. Fujino, K., Sekiguchi, H., Sato, T., Kiuchi, H., Nonoue, Y., et al. (2004) Mapping of quantitative trait loci controlling lowtemperature germinability in rice (Oryza sativa L.). Theor. Appl. Genet. 108, 794-799 https://doi.org/10.1007/s00122-003-1509-4
  4. Garcia, A., Rizzo, C. A., Ud-Din, J., Bartos, S. L., Senadhira, D., et al. (1997) Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ. 20, 1167-1174 https://doi.org/10.1046/j.1365-3040.1997.d01-146.x
  5. Gong, J. M., He, P., Qian, Q., Shen, L. S., Zhu, L. H., et al. (1999) Identification of salt-tolerance QTL in rice (Oriza sativa L.). China Sci. Bull. 44, 68-71 https://doi.org/10.1007/BF03182889
  6. Heu, M. H. and Koh, H. J. (1991) Newly bred salt tolerant lines in rice. Kor. J. Breed 23, 59-63
  7. Kang, H. J., Cho, Y. G., Lee, S. Y., Lee, Y. T., Eun, M. Y., et al. (1999) Identification of QTL associated with yield and its components based on molecular map in rice. Kor. J. Breed. 31, 40-47
  8. Kim, K. M., Kwon, Y. S., Lee, J. J., Eun, M. Y., and Sohn, J. K. (2004) QTL mapping and molecular marker analysis for the resistance of rice to ozone. Mol. Cells 17, 151-155
  9. Koyama, M. L., Levesley, A., Koebner, R. M., Flowers, T. J., and Yeo, A. R. (2001) Quantitative Trait Loci for component physiological traits determining salt tolerance in rice. Plant physiol. 125, 406-422 https://doi.org/10.1104/pp.125.1.406
  10. Kwon, Y. S., Kim, K. M., Eun, M. Y., and Sohn, J. K. (2001) Quantitative trait toci mapping associated with plant regeneration ability from seed derived calli in rice (Oryza sativa L.). Mol. Cells 11, 64-67
  11. Lee, K. S. (1995) Variability and genetics of salt tolerance in japonica rice (Oryza sativa L.). PhD thesis, pp. 1-112, University of the Philippines, Los Banos
  12. Lee, S. Y. and Senadhira, D. (1999) Salinity tolerance of some breeding lines of the new plant type in japonica rice. SABRAO J. Breed. Genet. 31, 77-81
  13. Li, Z. K., Pinson, S. R. M., Stansel, J. W., and Park, W. D. (1995) Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor. Appl. Genet. 91, 374-381
  14. Lin, H. X., Yanagihara, S., Zhuang, J. Y., Senboku, T., Zheng, K. L., et al. (1998) Identification of QTL for salt tolerance in rice via molecular markers. Chinese J. Rice Sci. 12, 72-78
  15. Lin, H. X., Zhu, M. Z., Yano, M., Gao, J. P., Liang, Z. W., et al. (2004) QTLs for $Na^+$ and $K^+$ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 108, 253-260 https://doi.org/10.1007/s00122-003-1421-y
  16. McCouch, S. R., Cho, Y. G., Yano, M., Paul, E., Blinstrub, M., et al. (1997) Report on QTL nomenclature. Rice Genet. Newslett. 14,11-13
  17. McCouch, S. R., Kochert, G., Yu, Z. H., Wang, Z. Y., Kush, G. S., et al. (1988) Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76, 815-829 https://doi.org/10.1007/BF00273666
  18. Nelson, J. C. (1997) QGENE, software for marker-based genomic analysis and breeding. Mol. Breed. 3, 239-245 https://doi.org/10.1023/A:1009604312050
  19. Prasad, S. R., Bagali, P. G., Hittalmani, S., and Shashidhar, H. E. (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr. Sci. 78, 162-164
  20. Sato, T., Ueda, T., Fukuta, Y., Kumagai, T., and Yano, M. (2003) Mapping of quantitative trait loci associated with ultraviolet- B resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 107, 1003-1008 https://doi.org/10.1007/s00122-003-1353-6
  21. Septiningsih, E. M., Prasetiyono, J., Lubis, E., Tai, T. H., Tjubaryat, T., et al. (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet.107, 1419-1432 https://doi.org/10.1007/s00122-003-1373-2
  22. Szabolcs, I. (1989) Salt-affected soils. pp. 1-274. CRC press Inc. Florida. USA
  23. Tanksley, S. D., (1993) Mapping polygenes. Ann. Rev. Genet. 27, 205-233 https://doi.org/10.1146/annurev.ge.27.120193.001225
  24. Yeo, A. R. and Flowers, T. J., (1984) Mechanisms of salinity resistance in rice and their role as physiological criteria in plant breeding; in Salinity Tolerance in Plant Strategies for Crop Improvement, Staples, R. C. and Toenniessen, G. H. (eds.), pp. 151-170, Jhon Wiley and Sons, New York
  25. Yeo, A. R., Yeo, M., Flowers, E., S. A., and Flowers, T. J., (1990) Screening of rice (Oriza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to over all performance. Theor. Appl. Genet. 79, 377-384 https://doi.org/10.1007/BF01186082
  26. Yoshida S., Forno, D. A., Cock, J. H., and Gomez, K. A. (1976) Laboratory manual for physiological studies of rice. 3rd ed., pp. 1-83, IRRI, Manila
  27. Zhang, W. and Smith, C. (1992) Computer simulation of marker assisted selection utilizing linkage disequilibrium. Theor. Appl. Genet. 83, 813-820
  28. Zhang, G. Y., Guo, Y., Chen, S. L., and Chen, S. Y. (1995) RFLP tagging of a salt tolerance gene in rice. Plant Sci. 110, 227-234 https://doi.org/10.1016/0168-9452(95)04219-K