• 제목/요약/키워드: Phase-shift PWM

검색결과 97건 처리시간 0.023초

A PWM Phase-Shift Circuit using an RC Delay for Multiple LED Driver ICs

  • Oh, Jae-Mun;Kang, Hyeong-Ju;Yang, Byung-Do
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권4호
    • /
    • pp.484-492
    • /
    • 2015
  • This paper proposes a PWM phase-shift circuit to make that the LED lighting system distributes the channel currents evenly for any number of LED strings by generating evenly phase-shifted PWM signals for multiple LED driver ICs. The evenly distributed channel currents reduce the peak current, the decoupling capacitor size, and EMI noise. The PWM phase-shift circuit makes an arbitrary degree of PWM phase-shift by using a resistor and a capacitor. It measures the RC delay once. It reduces the number of external resistors and capacitors by providing zero and 180 degree phase-shift modes requiring no resistor and capacitor. An LED driver IC with the PWM phase-shift circuit was fabricated with a $0.35{\mu}m$ BCDMOS process. The PWM phase-shift circuit receives a PWM signal of 50 Hz~20 kHz at $f_{CLK}=450kHz$ and it generates a $0{\sim}360^{\circ}$ phase-shifted PWM signal with $R=0{\sim}1.1M{\Omega}$ at C=1 nF and $f_{PWM}=1kHz$. The measured phase errors are 1.74~3.94% due to parasitic capacitances.

위상 천이 소프트 스위칭 PWM DC-DC 컨버터를 이용한 방전등 구동용 직류 전원장치 (DC Power Supply Driving Discharge Lamp Using PWM DC-DC Converter of Single- Phase Shift Soft Switching)

  • 이현우;정상화;권순걸;서기영
    • 조명전기설비학회논문지
    • /
    • 제19권7호
    • /
    • pp.100-106
    • /
    • 2005
  • 일반적으로 자외선(UV)을 발생하기 위한 방전등 구동용 직류 전원장치는 하드 스위칭 모드로 동작되어지는 고주파 스위칭 DC-DC 컨버터가 사용되고 있다. 구체적으로 전원장치는 전자 노이즈 장해에 의한 전자 회로의 오동작이나 각 구성 소자의 발열의 문제 등이 시스템의 신뢰성을 저하시키는 원인이 되고 있다. 그러므로 본 논문에서는 소프트 스위칭 회로 기술을 사용한 고주파 링크 DC-DC 컨버터로서 먼저 구체적으로 1차측 위상 천이 PWM DC-DC 컨버터와 제안한 2차측 위상 천이 PWM DC-DC 컨버터를 조합하여 방전등 구동용 직류 전원장치를 제안하였다. 제안하는 방전등 구동용 직류 전원장치는 시뮬레이션과 실험을 통하여 그 타당성을 서술하였다.

블로킹커패시터를 이용한 향상된 위상천이 펄스폭변조 풀브리지 컨버터 (Improved Phase-shift Pulse-width Modulation Full-bridge Converter using a Blocking Capacitor)

  • 정강률
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.20-29
    • /
    • 2011
  • This paper presents an improved phase-shift pulse-width modulation (PWM) full-bridge converter using a blocking capacitor. As the proposed converter reduces the circulation energy by inserting only one series blocking capacitor at the primary side of the conventional phase-shift PWM full-bridge converter structure, it improves the operation characteristics of the conventional converter. In this paper, first, the operation of conventional phase-shift PWM full-bridge converter is roughly reviewed, and then the operational principle of the proposed converter is classified and explained by each mode. After that, a prototype design example based on the operational principle is shown. Then, the improved operation characteristics of the proposed converter are actually verified through the experimental results.

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

듀얼 모드 위상 시프트 ZVS PWM 제어 고주파 공진형 인버터를 이용한 IH 온수기 (Induction Heating Water Heater using Dual Mode Phase Shifted ZVS-PWM High Frequency Resonant Inverter)

  • 정상석;유의정;우경일;박한석
    • 전기학회논문지P
    • /
    • 제67권2호
    • /
    • pp.82-89
    • /
    • 2018
  • This paper presents a novel prototype of dual mode control based phase shift ZVS PWM high frequency load resonant inverter with lossless snubber capacitors in addition to a single active auxiliary resonant snubber for electromagnetic induction heating(IH) foam metal based consumer fluid dual packs(DPA) heater. The operating principle in steady state and unique features of this voltage source soft switching high frequency inverter circuit topology are described in this paper. The lossless snubber and auxiliary active resonant snubber assisted constant frequency phase shift ZVS PWM high frequency load resonant inverter employing IGBT power modules actually is capable of achieving zero voltage soft commutation over a widely specified power regulation range from full power to low power. The steady state operating performances of this dual mode phase shift PWM series load resonant high frequency inverter are evaluated and discussed on the basis of simulation and experimental results for induction heated foam metal heater which is designed for compact and high efficient moving fluid heating appliance in the consumer pipeline systems.

새로운 위상전이 병렬입력/직렬출력 모듈화를 적용한 듀얼 컨버터 (A New Phase Shift PWM Parallel-input/series-output Modularized Dual Converter)

  • 노정욱
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.270-273
    • /
    • 2000
  • A new phase shift PWM parallel-input/series-output modularized dual converter is proposed in this paper. This converter is operated with a fixed duty ratio and its output voltage is regulated by phase shift between each module. Since the operating duty ratio of each module is fixed it is sufficient to implement a simple open loop drive circuitry for each module and the cost of total system can be much reduced. The operation of the converter is analyzed in this paper and verified by computer simulation.

  • PDF

Carrier Phase-Shift PWM to Reduce Common-Mode Voltage for Three-Level T-Type NPC Inverters

  • Nguyen, Tuyen D.;Phan, Dzung Quoc;Dao, Dat Ngoc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1197-1207
    • /
    • 2014
  • Common-mode voltage (CMV) causes overvoltage stress to winding insulation and damages AC motors. CMV with high dv/dt causes leakage currents, which create noise problems for equipment installed near the converter. This study proposes a new pulse-width modulation (PWM) strategy for three-level T-type NPC inverters. This strategy substantially eliminates CMV. The principle for selecting suitable triangle carrier signals for the three-level T-type NPC is described. The proposed method can mitigate the peak value of CMV by 50% compared with the phase disposition pulse-width modulation method. Furthermore, the proposed method exhibits better harmonic spectrum and lower root mean square value for the CMV than those of the reduced-CMV method on the basis of the phase opposition disposition PWM scheme with modulation index higher than 0.5. The proposed modulation can easily be implemented using software without any additional hardware modifications. Both simulation and experimental results demonstrate that the proposed carrier phase-shift PWM method has good output waveform performance and reduces CMV.

대용랑 ZVS Full Bridge DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로 (Digital-To-Phase-Shift PWM Circuit for High Power ZVS Full Bridge DC/DC Converter)

  • 김은수;김태진;변영복;박순구;김윤호;이재학
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권1호
    • /
    • pp.54-61
    • /
    • 2000
  • Conventionally, ZVS FB DC/DC converter was controlled by monolithic IC UC3879, which includes the functions of oscillator, error amplifier and phase-shift circuit. Also, microprocessor and DSP have been widely used for the remote control and for the immediate waveform control in ZVS FB DC/DC converter. However the conventional microprocessor controller is complex and difficult to control because the controller consists of analog and digital parts. In the case of the control of FB DC/DC converter, the output is required of driving a direct signal to the switch drive circuits by the digital controller. So, this paper presents the method and realization of designing the digital-to-phase shift PWM circuit controlled by DSP (TMX320C32) in a 2,500A, 40㎾ ZVS FB DC/DC converter.

  • PDF

IGBT를 이용한 단산 PWM정류기 병렬운전 (The Parallel Operation of Single Phase PWM Rectifier using IGBT)

  • 이현원;장성영;김연준;이광주;김남해
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.122-125
    • /
    • 1999
  • The AC-to-DC single-phase PWM rectifier for traction applications using high power semiconductor, IGCT is made and tested. Parallel operation of two PWM converter is adopted for increasing capacity of converters. For reducing harmonics, the harmonic content is eliminated by the phase shift between two converters switching phase. The output voltage control is achieved by interns calculation without detecting the input current. The part of PLL used for controlling power factor is simply implemented by software.

  • PDF

대용량 ZVS FB DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로 (Digital-To-Phase-Shift PWM Circuit for High Power ZVS FB DC/DC Converter)

  • 김은수;김태진;최해영;박순구;김윤호;이재학
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.618-621
    • /
    • 1999
  • With the advent of the high-speed microprocessor and DSP, the possibility of executing a control strategy in digital domain has become a reality. By the use of the DSP and microprocessor controller, many high power drive system may be enhanced resulting in the improved robustness to EMI, the ability to communicate the operating conditions and the ease of adjusting the control parameters. But, the digital controller using DSP or microprocessor is not applied in the high frequency switching power supplies, especially full bridge DC/DC converter. So, this paper presents the method and realization of designing a digital-to-phase shift PWM circuit for full digital controlled full bridge DC/DC converter with zero voltage switching. The operating principles, simulation and experimental results will be presented.

  • PDF