• Title/Summary/Keyword: Phase-current detection

Search Result 286, Processing Time 0.025 seconds

A New Space-Vector PWM Inverters without Phase Current Sensors (상전류센서 없는 새로운 방식의 공간 전압 벡터 PWM 인버터)

  • Joo, Hyeong-Gil;Shin, Hwi-Beom;Kim, Chang-Gyun;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.333-335
    • /
    • 1996
  • A method for detecting the three-phase currents of a voltage-fed pulsewidth modulated(PWM) inverter is proposed by utilizing only one current sensor placed on the dc-link. The proposed space vector PWM technique is two phase modulated PWM, this enables to detect the phase currents from only one DC link current sensor. The proposed method is simple, reduces the cost, and provides the small detection errors.

  • PDF

Open and Short Circuit Switches Fault Detection of Voltage Source Inverter Using Spectrogram

  • Ahmad, N.S.;Abdullah, A.R.;Bahari, N.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.190-199
    • /
    • 2014
  • In the last years, fault problem in power electronics has been more and more investigated both from theoretical and practical point of view. The fault problem can cause equipment failure, data and economical losses. And the analyze system require to ensure fault problem and also rectify failures. The current errors on these faults are applied for identified type of faults. This paper presents technique to detection and identification faults in three-phase voltage source inverter (VSI) by using time-frequency distribution (TFD). TFD capable represent time frequency representation (TFR) in temporal and spectral information. Based on TFR, signal parameters are calculated such as instantaneous average current, instantaneous root mean square current, instantaneous fundamental root mean square current and, instantaneous total current waveform distortion. From on results, the detection of VSI faults could be determined based on characteristic of parameter estimation. And also concluded that the fault detection is capable of identifying the type of inverter fault and can reduce cost maintenance.

Fault Line Detection Methodology for Four Parallel Lines on the Same Tower

  • Li, Botong;Li, Yongli;Yao, Chuang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1217-1228
    • /
    • 2014
  • A method for faulted line detection of four parallel lines on the same tower is presented, based on four-summing and double-differential sequences of one terminal current. Four-summing and double-differential sequences of fault current can be calculated using a certain transformation matrix for parameter decoupling of four parallel transmission lines. According to fault boundary conditions, the amplitude and phase characteristics of four-summing and double-differential sequences of fault current is studied under conditions of different types of fault. Through the analysis of the relationship of terminal current and fault current, a novel methodology for fault line detection of four parallel transmission line on the same tower is put forward, which can pick out the fault lines no matter the fault occurs in single line or cross double lines. Simulation results validate that the methodology is correct and reliable under conditions of different load currents, transient resistances and fault locations.

Diagnostic Technique and Device for Railway Arresters (철도용 피뢰기 진단기술 및 장치)

  • Kil Gyung-Suk;Han Ju-Seop;Jang Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1422-1424
    • /
    • 2004
  • Various deterioration diagnostic techniques and devices are suggested, and most of which measure leakage current components as an indicator of arrester ageing. However, the techniques based on the magnitude of leakage current measure simply RMS or peak value of leakage current components and do not provide detailed information needed in the diagnosis. In this study, we found that the phase vs. wave height of total leakage current is changed or a new wave height is produced with arrester ageing. To complete the new technique, we designed an arrester diagnostic device which is composed of a current detection circuit, an optical transmission circuit, and an analysis program. After measurement of the total leakage current, magnitudes, phase vs. wave height, and harmonics of the leakage current components are analyzed by the microprocessor based device. From the experimental results, we confirmed that the device can measure most parameters needed for the arrester diagnostics and analyze an initial deterioration state.

  • PDF

The Study on Detecting Scheme of Voltage Sag using the Two Difference Voltage (이중 차 전압을 이용한 전압 새그 검출 기법에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.65-73
    • /
    • 2014
  • In this paper, the detection scheme of the voltage variation using a two difference voltage is proposed. The conventional sag detector is from a single-phase digital phase-locked loop (DPLL) that is based on a d-q transformation using an all-pass filter (APF). The APF generates a virtual q-axis voltage component with $90^{\circ}$ phase delay but the APF cannot generate the virtual q-axis voltage depending on the phase of the grid voltage. To overcome the problem, q-axis voltage component is generated from difference between the current and previous value of d-axis voltage component in the stationary reference frame. However, the difference voltage around the zero crossing is not enough to detect the voltage sag. Therefore, the new detection scheme using the two difference voltage which can detect the sag around the zero crossing voltage is proposed.

A New Approach to On-Line Monitoring Device for ZnO Surge Arresters

  • Lee Bok-Hee;Gil Hyoung-Jun;Kang Sung-Man
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.131-137
    • /
    • 2005
  • This paper describes a new approach to the algorithm and fundamental characteristics of the device for monitoring the leakage currents flowing through zinc oxide (ZnO) surge arresters. In order to obtain a technique for a new on-line monitoring device that can be used in the deterioration diagnosis of ZnO surge arresters, the new algorithm and on-line leakage current detection device for extracting the resistive and capacitive currents using the phase shift addition method were proposed. The computer-based on-line monitoring device can sense accurately the power frequency leakage currents flowing through ZnO surge arresters. The on-line leakage current monitoring device of ZnO surge arresters proposed in this work has the high sensitivity compared to the third harmonic leakage current detection devices. As a consequence, it was found that the proposed leakage current monitoring device would be useful for forecasting the defects and degradation of ZnO surge arresters.

Study for Sensorless Torque Control Scheme of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 센서리스 토오크제어에 관한 연구)

  • 김윤호;이장선
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.212-216
    • /
    • 1998
  • For a Switched Reluctance Motor(SRM) drive, the important things are 1) reducing torque ripple, 2) improving efficiency, 3) sensorless speed control, 4) accurate position. The position information impotant for the efficiency and smoothness drives. Since SRMs characteristics are nonlinear. It is difficult to estimated phase current in saturation region. This paper describes a method for indirect sensing of the rotor position in SRM which use both voltage and current. The method obtains rotor position by using unconducting phase. The information about the rotor position is achieved by differentiating the unconducting phase current or the voltage gradient. And then, this paper presents a torque control with indirect rotor position detection methods. This torque control is achieved by developing a detailed nonlinear model of the motor.

  • PDF

Development of a Sensorless Deep Well Pump Multi-function Controller using Current Detection Method (전류검출 방식의 심정 펌프 센서리스형 다기능 컨트롤러 개발)

  • Lee, In-Jae;Basnet, Barun;Chun, Hyun-Jun;Bang, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1149-1154
    • /
    • 2017
  • In this paper, we propose a sensorless multi-function controller applicable for deep well water pumps using current detection method. The proposed system overcomes various drawbacks of existing sensored system and additional features like Over current protection function due to overload, Under current protection function for idling at low water level and Relay function for starting single phase motors and acts as a level indicator to detect water lever in real time by the current detection method. A prototype of the multi-function controller system is designed and all of its functions are tested in the laboratory. The application of the proposed controller ensures reduction in the power consumption and maintenance cost in the facilities like water and septic tanks, drainage and waste water system, oil and chemical tanks where deep well pumps are used.

Analysis of Laser-protection Performance of Asymmetric-phase-mask Wavefront-coding Imaging Systems

  • Yangliang, Li;Qing, Ye;Lei, Wang;Hao, Zhang;Yunlong, Wu;Xian'an, Dou;Xiaoquan, Sun
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Wavefront-coding imaging can achieve high-quality imaging along with a wide range of defocus. In this paper, the anti-laser detection and damage performance of wavefront-coding imaging systems using different asymmetric phase masks are studied, through modeling and simulation. Based on FresnelKirchhoff diffraction theory, the laser-propagation model of the wavefront-coding imaging system is established. The model uses defocus distance rather than wave aberration to characterize the degree of defocus of an imaging system. Then, based on a given defocus range, an optimization method based on Fisher information is used to determine the optimal phase-mask parameters. Finally, the anti-laser detection and damage performance of asymmetric phase masks at different defocus distances and propagation distances are simulated and analyzed. When studying the influence of defocus distance, compared to conventional imaging, the maximum single-pixel receiving power and echo-detection receiving power of asymmetric phase masks are reduced by about one and two orders of magnitude respectively. When exploring the influence of propagation distance, the maximum single-pixel receiving power of asymmetric phase masks decreases by about one order of magnitude and remains stable, and the echodetection receiving power gradually decreases with increasing propagation distance, until it approaches zero.

The comparison of harmonic detection methods on the Power line (상용(220V/60Hz)전원의 고조파 검출 방식의 비교)

  • Jung Dong-Youl;Hwang Hwan-Young;Park Chong-Yeun
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.883-886
    • /
    • 2004
  • The current harmonic detector consists of the load current detector and the notch filter. It obtains the harmonic current from the output of the load current detector using the Notch filter. The GIC in the notch filter is used instead of inductor to minimize the magnitude and phase characteristics variation caused by using twin-T notch filter and passive elements(inductor).

  • PDF