• Title/Summary/Keyword: Phase and Magnitude

Search Result 850, Processing Time 0.024 seconds

GMM-Based Gender Identification Employing Group Delay (Group Delay를 이용한 GMM기반의 성별 인식 알고리즘)

  • Lee, Kye-Hwan;Lim, Woo-Hyung;Kim, Nam-Soo;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.243-249
    • /
    • 2007
  • We propose an effective voice-based gender identification using group delay(GD) Generally, features for speech recognition are composed of magnitude information rather than phase information. In our approach, we address a difference between male and female for GD which is a derivative of the Fourier transform phase. Also, we propose a novel way to incorporate the features fusion scheme based on a combination of GD and magnitude information such as mel-frequency cepstral coefficients(MFCC), linear predictive coding (LPC) coefficients, reflection coefficients and formant. The experimental results indicate that GD is effective in discriminating gender and the performance is significantly improved when the proposed feature fusion technique is applied.

Findings Regarding an Intracranial Hemorrhage on the Phase Image of a Susceptibility-Weighted Image (SWI), According to the Stage, Location, and Size

  • Lee, Yoon Jung;Lee, Song;Jang, Jinhee;Choi, Hyun Seok;Jung, So Lyung;Ahn, Kook-Jin;Kim, Bum-soo;Lee, Kang Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose: Susceptibility weighted imaging (SWI) is a new magnetic resonance technique that can exploit the magnetic susceptibility differences of various tissues. Intracranial hemorrhage (ICH) looks a dark blooming on the magnitude images of SWI. However, the pattern of ICH on phase images is not well known. The purpose of this study is to characterize hemorrhagic lesions on the phase images of SWI. Materials and Methods: We retrospectively enrolled patients with ICH, who underwent both SWI and precontrast CT, between 2012 and 2013 (n = 95). An SWI was taken, using the 3-tesla system. A phase map was generated after postprocessing. Cases with an intracranial hemorrhage were reviewed by an experienced neuroradiologist and a trainee radiologist, with 10 years and 3 years of experience, respectively. The types and stages of the hemorrhages were determined in correlation with the precontrast CT, the T1- and T2-weighted images, and the FLAIR images. The size of the hemorrhage was measured by a one- directional axis on a magnitude image of SWI. The phase values of the ICH were qualitatively evaluated: hypo-, iso-, and hyper-intensity. We summarized the imaging features of the intracranial hemorrhage on the phase map of the SWI. Results: Four types of hemorrhage are observed: subdural and epidural; subarachnoid; parenchymal hemorrhage; and microbleed. The stages of the ICH were classified into 4 groups: acute (n = 34); early subacute (n = 11); late subacute (n = 15); chronic (n = 8); stage-unknown microbleeds (n = 27). The acute and early subacute hemorrhage showed heterogeneous mixed hyper-, iso-, and hypo-signal intensity; the late subacute hemorrhage showed homogeneous hyper-intensity, and the chronic hemorrhage showed a shrunken iso-signal intensity with the hyper-signal rim. All acute subarachnoid hemorrhages showed a homogeneous hyper-signal intensity. All parenchymal hemorrhages (> 3 mm) showed a dipole artifact on the phase images; however, microbleeds of less than 3 mm showed no dipole artifact. Larger hematomas showed a heterogeneous mixture of hyper-, iso-, and hypo-signal intensities. Conclusion: The pattern of the phase value of the SWI showed difference, according to the type, stage, and size.

The Effect of Increased Running Speed on the Magnitude of Impact Shock Attenuation during Ground Contact (착지 시 달리기 속도 증가가 충격 쇼크 흡수에 미치는 영향)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of increased running speed on the magnitude of impact shock attenuation in high frequency (9~20 Hz) at support phase on the treadmill running. Method: Twenty-four healthy male heel-toe runners participated in this study. Average age, height, mass, and preference running speed were 23.43±3.78 years, 176.44±3.38 cm, 71.05±9.04 kg, and 3.0±0.5 m/s, respectively. Three triaxial accelerometer (Noraxon, USA) were mounted to the tuberosity of tibia, PSIS (postero-superior iliac spine), and forehead to collect acceleration signals, respectively. Accelerations were collected for 20 strides at 1,000 Hz during treadmill (Bertec, USA) running at speed of 2.5, 3.0, 3.5, and 4.0 m/s. Power Spectrum Density (PSD) of three acceleration signals was calculated to use in transfer function describing the gain and attenuation of impact shock between the tibia and PSIS, and forehead. One-way ANOVA were performed to compare magnitude of shock attenuation between and within running speeds. The alpha level for all statistical tests was .05. Results: No significant differences resulted for magnitude of the vertical and resultant impact shock attenuation between the tibia and PSIS, and forehead between running speeds. However, significant differences within running speed were found in magnitude of the vertical shock attenuation between tibia and PSIS, tibia and forehead at speed of 2.5, 3.0 m/s, respectively. Conclusion: In conclusion, it might be conjectured that muscles covering the knee and ankle joints and shoe's heel pad need to strengthen to keep the lower extremities from injuries by impact shock at relatively fast running speed that faster than preferred running speed.

Transmission of Substituent Effects through 5-Membered Heteroaromatic Rings

  • Lee, Ik Hun;Ri, Sun Gi;Kim, Chang Gon;Jeong, Dong Su;Kim, Chan Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.882-890
    • /
    • 2000
  • Ab initio calculations are carried out on protonation equilibria of 5-memberedheteroaromatic aldehydes (5MHAs;heteroatom Y = NH, O, PH,and S and substituentZ = NH2, OCH3, SCH3, CH3, H, Cl, CHO, CN,NO2) at the $MP2}6-31G*$ level. Naturalbond orbital (NBO) analyses show that the optimal localized natural Lewis structures of the protonated aldehydes,(P), are ortho (C3) protonated (for Y = O, PH and S) and N-pro-tonated (for Y = NH) forms in contrast to the standard structural Lewis formula for aldehydes, (R). The delo-calizability of ${\pilone}-pairon$ the heteroatom $(n{\pi}(Y))$ is in the order Y = NH > O > S > PH. The transmission efficiency of (Z) substituent effects to the carbonyl moiety run parallel to the delocalizability of $n{\pi}(Y)$ for R,but is dominantly influenced by the cationic charge on $C{\alpha}(C{\alpha}+)$ for P, which is in the reverse order of thede-localizability of $n{\pi}(Y).$ The Hammett ${\rho}values$ for variation of Z in the protonation are determined by the dif-ference in the transmission efficiencies between Pand R stateat simple interpretation of their magnitude is not warranted. However,the magnitude of the gas-phase ${\rho}z+$ values decreases as the level ofcomputation is raised from RHF/3-21G* to RHF/6-31G* and to $MP2}6-31G*$ but increases again at the MP4SDQ/6-31G* level. Further decrease occurs when solvent effect (water) is accounted for by the SCRF method. Comparison of the SCRF ${\rho}z+values$ with those determined in the aqueous acid solution for Y = S and CHCH shows inadequacy of accounting for the solvent effects on the ${\rho}values$ by a continuum model. It is noteworthy that semiempirical calculations, especially theAM1 method, give even lower magnitude of the gas-phase ${\rho}values.

Analysis of Lower Extremity Muscle Activities in Parkinson's Patients for Improving to Stop Task (파킨슨 환자의 멈춤 보행 시 하지 근전도 분석)

  • Yang, Chang-Soo;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.333-339
    • /
    • 2012
  • Freezing of gait is a severely problem in people with Parkinson's disease. The purpose of this study was to investigate the muscle activities of adductor longus, gluteus medius, gluteus maximus, biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior using Noraxon 8 channels EMG system during stop task in patients with Parkinson's disease. Seven parkinson's patients and age matched normal participants were recruited in the study. Filtered EMG signals were rectified, smoothed and integrated. To control for the altered timing and magnitude of activity, iEMG was normalized for time and peak value. The results indicated that the patients with Parkinson showed decreased gait cycle, stance phase, swing phase time, swing phase time ratio and increased stance phase time ratio than normal participants. The patients with Parkinson showed decreased gastrocnemius muscle activity time ratio, while increased tibialis anterior muscle activity time ratio than normal participants. During stance phase before stop, the patients with Parkinson showed relatively lower average and peak iEMG in anterior tibialis and gastrocnemius muscle than normal participants. During swing phase before stop, the patients with Parkinson showed relatively higher average iEMG in gastrocnemius muscle than normal participants. During stop phase, the patients with Parkinson showed relatively lower average and peak iEMG in anterior tibialis and gastrocnemius muscle than normal participants.

Phase-Shifter for Real-Time Control of Transmission System (송전계통의 실시간 제어를 위한 위상변이기)

  • Han, Hyung-Moon;Chang, Byong-Kun
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.432-434
    • /
    • 1994
  • This paper describes a phase-shifter which can flexibly adjust the active and reactive power flow through an ac transmission line. The phase-shifter has two voltage-source converters sharing an energy storage capacitor. The magnitude of the injected voltage is controlled by the converter I connected in parallel with the sending terminal, while that of phase angle by the converter II in series with the line through the coupling transformer. In order to analyze the whole system operation, an equivalent circuit model was developed and verified by a computer simulation with EMTP code.

  • PDF

DSP-based Current Programmed Control of Three Phase PWM AC-AC Boost Converter (3상 PWM AC-AC 부스트 컨버터의 DSP 기반 전류 프로그램 제어)

  • Choi Nam-Sup;Li Yulong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. Compared to duty-ratio voltage control, current programmed control has several advantages such as reduction of system order, inherent current protection and robust output. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation and to establish some important characteristic equations for control purpose. The experiment results show the validity of the proposed scheme.

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK

  • OH SU YEON;YI YU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.151-157
    • /
    • 2004
  • It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.

Elasto-Plastic Finite Element Analysis in Consideration of Phase Transformations (상변태를 고려한 탄소성 유한요소 해석)

  • Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.334-336
    • /
    • 2009
  • An elastic-plasticity model during the austenitic decomposition was derived and implemented to incorporate the two important deformation behaviors observed during the phase transformations: the volumetric strain and transformation induced plasticity due to the temperature change and phase transformation. To obtain transformed phase volume fractions during cooling, the fourth order Runge-Kutta method was used to solve the Kirkaldy's phase kinetics model which is function of temperature, austenitic grain size and chemical composition. The volumetric strain was calculated by considering the densities of constituent phases, while the transformation induced plasticity was based on the micro-plasticity due to the volume mismatch between soft austenitic phase and other harder phases. The constitutive equations were implemented into the implicit finite element software and a simple boundary value problem was chosen as a model problem to validate the effect of transformation plasticity on the deformation behavior of steel under cooling from high temperature. It was preliminary concluded that the transformation plasticity plays a critical role in relaxing the developed stress during forming and thus reducing the magnitude of springback.

  • PDF

Reconstruction of Magnetic Resonance Phase Images using the Compressed Sensing Technique (압축 센싱 기법을 이용한 MRI 위상 영상의 재구성)

  • Lee, J.E.;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.464-471
    • /
    • 2010
  • Compressed sensing can be used to reduce scan time or to enhance spatial resolution in MRI. It is now recognized that compressed sensing works well in reconstructing magnitude images if the sampling mask and the sparsifying transform are well chosen. Phase images also play important roles in MRI particularly in chemical shift imaging and magnetic resonance electrical impedance tomography (MREIT). We reconstruct MRI phase images using the compressed sensing technique. Through computer simulation and real MRI experiments, we reconstructed phase images using the compressed sensing technique and we compared them with the ones reconstructed by conventional Fourier reconstruction technique. As compared to conventional Fourier reconstruction with the same number of phase encoding steps, compressed sensing shows better performance in terms of mean squared phase error and edge preservation. We expect compressed sensing can be used to reduce the scan time or to enhance spatial resolution of MREIT.