DOI QR코드

DOI QR Code

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK

  • OH SU YEON (Department of Astronomy & Space Science, Chungnam National University) ;
  • YI YU (Department of Astronomy & Space Science, Chungnam National University)
  • Published : 2004.12.01

Abstract

It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.

Keywords

References

  1. Burlaga, L. F., Slittler, E., Mariani, F., & Schwenn, R. 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations, J. Geophys. Res., 86, 6673-6684 https://doi.org/10.1029/JA086iA08p06673
  2. Gonzalez, W. D., & Tsurutani, B. T. 1987, Criteria of interplanetary parameters causing intense magnetic storms (Dst<-100nT), Planet. Space Sci., 35, 1101-1109 https://doi.org/10.1016/0032-0633(87)90015-8
  3. Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasylinunas, V. M. 1994, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771-5792 https://doi.org/10.1029/93JA02867
  4. Gosling, J. T., McComas, D. J., Philps, J. L., & Bame S. J. 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96, 7831-7839 https://doi.org/10.1029/91JA00316
  5. Jurac, S., Kasper, J. C., Richardson, J. D., & Lazarus, A. J. 2002, Geomagnetic disturbances and their relationship to interplanetary shock parameters, Geophys. Res. Lett., 29, pp.101-1 https://doi.org/10.1029/TE029i003p00101
  6. Lepping, R. P., Berdichevsky, D. B., Burlaga, L. F., Lazarus, A. J., Kasper, J., Desch, M. D., Wu, C.-C., Reames, D. V., Singer, H. J., Smith, C. W., & Ackerson, K. L. 2001, The Bastille day Magnetic Clouds and Upstream Shocks: Near-Earth Interplanetary Observations, Solar Phys., 204, 285-303 https://doi.org/10.1023/A:1014264327855
  7. Lindsay, G. M., Russell, C. T., Luhmann, J. G., & Gazis, P. 1994, On the sources of interplanetary shocks at 0.72 AU, J. Geophys. Res., 99, 11-17 https://doi.org/10.1029/93JA02666
  8. Luhmann, J. G., 1995, Sources of interplanetary shocks, Adv. Space Res., 15, 355-364 https://doi.org/10.1016/0273-1177(94)00117-J
  9. Oh, S. Y., Yi, Y., Nah, J. K., & Cho, K. S. 2002, Classification of the interplanetary shocks by shocks drivers, J. Korean Astron. Soc., 35, 151-157 https://doi.org/10.5303/JKAS.2002.35.3.151
  10. St. Cyr, 0. C., Howard, R. A., Jr. Sheeley, N. R., Plun kett, S. P., Michels, D. J., Paswaters, S. E., Koomen, M. J., Simnett, G. M., Thompson, B. J., Gurman, J. B., Schwenn, R., Webb, D. F., Hildner, E., & Lamy, P. L. 2000, Properties of Coronal Mass Ejections: SOHO LASCO Observations from January 1996 to June 1998, J. Geophys. Res., 105, 18169-18186 https://doi.org/10.1029/1999JA000381
  11. Temerin, M. & Xinlin, Li, 2002, A new model for the prediction of Dst on the basis of the solar wind, J. Geophys.Res., 107, 1472 https://doi.org/10.1029/2001JA007532
  12. Tsurutani, B. T., Gonzalez, W. D., Tang, F., & Lee, Y. Te. 1992, Great magnetic storms, Geophys. Res. Lett., 19, 73-76 https://doi.org/10.1029/TE019i002p00073
  13. Tsurutani, B. T., Gonzalez, W. D., Gonzalez, Alicia L. C., Tang, Frances, Arballo, John K., & Okada, Masaki 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 100, 21717-21734 https://doi.org/10.1029/95JA01476
  14. Tsurutani, B. T., & Gonzalez, W. D. 1997, The interplanetary causes of magnetic storms-A review in Magnetic storms, Geophys. Monogr. Ser., vol. 98, pp. 73-76
  15. Watari, S., & Watanabe, T. 1998, The solar drivers of geo-magnetic disturbances during solar minimum, Geophys. Res. Lett., 25, 2489-2492 https://doi.org/10.1029/98GL01085
  16. Webb, D. F., Cliver, E. W., Crooker, N. U., St. Cyr, O. C., & Thompson, B. J. 2000, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms, J. Geophys. Res., 105, 7491-7508 https://doi.org/10.1029/1999JA000275

Cited by

  1. Statistically predicting Dst without satellite data vol.61, pp.5, 2009, https://doi.org/10.1186/BF03352936
  2. Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams vol.51, pp.1, 2011, https://doi.org/10.1134/S0016793211010099
  3. Relationship between interplanetary (IP) parameters and geomagnetic indices during IP shock events of 2005 vol.29, pp.1-2, 2008, https://doi.org/10.1007/s12036-008-0039-5
  4. Statistical investigation of Heliospheric conditions resulting in magnetic storms: 2 vol.45, pp.6, 2007, https://doi.org/10.1134/S0010952507060020
  5. Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams: 2. Main phase of storm vol.52, pp.1, 2012, https://doi.org/10.1134/S0016793212010082
  6. Regression modeling method of space weather prediction vol.323, pp.2, 2009, https://doi.org/10.1007/s10509-009-0060-4
  7. Space weather: the history of research and forecasting vol.16, pp.1, 2010, https://doi.org/10.15407/knit2010.01.090
  8. A comparative study of geomagnetic storms for solar cycles 23 and 24 vol.39, pp.5, 2018, https://doi.org/10.1007/s12036-018-9538-1