• Title/Summary/Keyword: Phase and Magnitude

Search Result 850, Processing Time 0.022 seconds

Phase Retrieval Using an Additive Reference Signal: I. Theory (더해지는 기준신호를 이용한 위성복원: I. 이론)

  • Woo Shik Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.26-33
    • /
    • 1994
  • Phase retrieval is concerned with the reconstruction of a signal from its Fourier transform magnitude (or intensity), which arises in many areas such as X-ray crystallography, optics, astronomy, or digital signal processing. In such areas, the Fourier transform phase of the desired signal is lost while measuring Fourier transform magnitude (F.T.M.). However, if a reference 'signal is added to the desired signal, then, in the Fourier trans form magnitude of the added signal, the Fourier transform phase of the desired signal is encoded. This paper addresses uniqueness and retrieval of the encoded Fourier phase of a multidimensional signal from the Fourier transform magnitude of the added signal along with the Fourier transform magnitude of the desired signal and the information of the additive reference signal. In Part I, several conditions under which the desired signal can be uniquely specified from the two Fourier transform magnitudes and the additive reference signal are presented. In Part II, the development of non-iterative algorithms and an iterative algorithm that may be used to reconstruct the desired signal(s) is considered.

  • PDF

Phase Retrieval Using an Additive Reference Signal: II. Reconstruction (더해지는 기준신호를 이용한 위성복원: II. 복원)

  • Woo Shik Kim
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.34-41
    • /
    • 1994
  • Phase retrieval is concerned with the reconstruction of a signal from its Fourier transform magnitude (or intensity), which arises in many areas such as X-ray crystallography, optics, astronomy, or digital signal processing In such areas, the Fourier transform phase of the desired signal is lost while measuring Fourier transform magnitude (F.T.M.). However, if a reference 'signal is added to the desired signal, then, in the Fourier trans form magnitude of the added signal, the Fourier transform phase of the desired signal is encoded This paper addresses uniqueness and retrieval of the encoded Fourier phase of a multidimensional signal from the Fourier transform magnitude of the added signal along with Fourier transform magnitude of the desired signal and the information of the additive reference signal In Part I, several conditions under which the desired signal can be uniquely specified from the two Fourier transform magnitudes and the additive reference signal are presented In Part II, the development of non-iterative algorithms and an iterative algorithm that may be used to reconstruct the desired signal (s) is considered

  • PDF

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

Speech Enhancement Using Phase-Dependent A Priori SNR Estimator in Log-Mel Spectral Domain

  • Lee, Yun-Kyung;Park, Jeon Gue;Lee, Yun Keun;Kwon, Oh-Wook
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.721-729
    • /
    • 2014
  • We propose a novel phase-based method for single-channel speech enhancement to extract and enhance the desired signals in noisy environments by utilizing the phase information. In the method, a phase-dependent a priori signal-to-noise ratio (SNR) is estimated in the log-mel spectral domain to utilize both the magnitude and phase information of input speech signals. The phase-dependent estimator is incorporated into the conventional magnitude-based decision-directed approach that recursively computes the a priori SNR from noisy speech. Additionally, we reduce the performance degradation owing to the one-frame delay of the estimated phase-dependent a priori SNR by using a minimum mean square error (MMSE)-based and maximum a posteriori (MAP)-based estimator. In our speech enhancement experiments, the proposed phase-dependent a priori SNR estimator is shown to improve the output SNR by 2.6 dB for both the MMSE-based and MAP-based estimator cases as compared to a conventional magnitude-based estimator.

Control of Three-Phase PWM Rectifiers Using Only DC-Side Sensors (직류측 센서만을 이용한 3상 PWM 정류기의 제어)

  • 이동춘
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.278-281
    • /
    • 2000
  • In this abstract a novel control scheme of voltage-source PWM rectifiers using only dc-side sensors is proposed. The phase currents are reconstructed from switching states of the rectifier and the dc output current. For effective current control the currents are estimated by a predictive state observer. Also both the phase angle and the magnitude of th source voltage are estimated by phase estimator and magnitude estimator respectively. The validity of the proposed ac sensorless technique is verified by experimental results.

  • PDF

Variable-magnitude Voltage Signal Injection for Current Reconstruction in an IPMSM Sensorless Drive with a Single Sensor

  • Im, Jun-Hyuk;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1558-1565
    • /
    • 2018
  • Three-phase current is reconstructed from the dc-link current in an AC machine drive with a single current sensor. Switching pattern modification methods, in which the magnitude of the effective voltage vector is secured over its minimum, are investigated to accurately reconstruct the three-phase current. However, the existing methods that modify the switching pattern cause voltage and current distortions that degrade sensorless performance. This paper proposes a variable-magnitude voltage signal injection method based on a high frequency voltage signal injection. The proposed method generates a voltage reference vector that ensures the minimum magnitude of the effective voltage vector by varying the magnitude of the injection signal. This method can realize high quality current reconstruction without switching pattern modification. The proposed method is verified by experiments in a 600W Interior permanent magnet synchronous machine (IPMSM) drive system.

Enforcing minimum-phase conditions on an arbitrry one-dimensional signal and its application ot two-dimensional phase retrieval problem (임의의 1 차원 신호의 최소 위상 신호화와 2차원 위상복원문제에의 응용)

  • 김우식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.105-114
    • /
    • 1997
  • The phase retrieval problem is concerned with the reconstruction of a signal or its fourier transform phase form the fourier transform magnitude of the signal. This problem does not have a unique solution, in general. If, however, the desired signal is minimum-phase, then it can be decided uniquely. This paper shows that we can make a minimum-phase signal by adding a delta function having a large value at the origin of an arbitrary one-dimensional signal, and a two-dimensional signal can be uniquely specified from its fourier transform magnitude if it is added by a delta function having a large value at the origin, and finally we can solve a two-dimensional phase retrieval problem by decomposing it into several ine-dimensional phase retrieval problems.

  • PDF

Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions (다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책)

  • Kim, Tae-Yun;Suh, Yong-Sug;Park, Hyeon-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.

Complex Modulus of Alumina Green Tapes Measured by Micro Fourier Rheometer (Micro Fourier Rheometer에 의한 알루미나 그린 테이프의 Complex Modulus 측정)

  • ;;;;Michael V. Swain;Bruno Pfister
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.122-129
    • /
    • 1999
  • Alumina tapes, having various weight ratios of alumina powder/(alumina+binder+plasticizer), X, and binder / (binder+plsticizer), Y, were prepared and their complex modulus was measured using Micro Fourier Rheometer. As the X and Y ratios increased, Transfer function(TF) magnitude and Transfer function (TF) phase increased and decreased, respectively, indicating that the elastic modulus of the tapes depends on the weight ratios. The temperature dependence of the viscosity of the tapes was visualized by the decreased TF magnitude and the increased TF phase. The Y ratio dependence of the complex modulus related to the glass transition temperature of the tapes and the moduls change by the Y ratio was higher than that by the X ratio within the comperature of the tapes and the modulus changes by the Y ratio was higher than that by the X ratio within the composition range, investigated in the present study. The measurement of the complex modulus of the alumina tapes suggested that the TF phase should be higher that 17$^{\circ}$for the tapes to be utilized for 3-dimensional shaping.

  • PDF