• Title/Summary/Keyword: Phase Transition Temperature

Search Result 882, Processing Time 0.025 seconds

Effect of PbTiO3 Concentration on the Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Relaxor Ferroelectrics -II. Phase Transition and Electric-field-induced Strains- ($Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$계 완화형 강유전체의 특성에 미치는 PbTiO3 첨가량의 영향 -II. 상전이 및 전계인가 변위특성-)

  • 박재환;김인태;김동영;조서용;흥국선;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.556-562
    • /
    • 1996
  • In order to understand the electrostrictive behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) solid solutions the dielectric constants the electric-field-induced strains and the pyroelectric coefficients of (1-x)PMN-xPT (x=0.1-0.4) were investigated in the temperature range -50~20$0^{\circ}C$. For x=0.1~0.35 where the phase transi-tion is diffusive the strain has a maxima at the temperature of maximum pyroelectric coefficient (depolrizing temperature) rather than the temperature of maximum dielectric constant. For x=0.4 where the phase transition is relatively sharp the strain decreases monotonically as the temperature increases. Relationships among the above experimental results are discussed.

  • PDF

A study on the structural and electric properties of fluorinated $YBa_2Cu_3O_{7-y}$ (불소화된 $YBa_2Cu_3O_{7-y}$ 초전도체의 구조적, 전기적 성질에 관한 연구)

  • 김재욱;김채옥
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.404-409
    • /
    • 1996
  • The structural and electric properties of $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$(x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been investigated by using XRD(X-ray diffraction), TMA(thennomechanical analysis), NMR(nuclear magnetic resonance) analysis and four probe method. $Y_{1-x}$YbF$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-y}$ samples were prepared by conventional solid-state reaction method using $Y_{2}$O$_{3}$, BaCO$_{3}$, CuO and YbF$_{3}$ power. TMA and high temperature XRD results shows that orthorhombic to tetragonal phase transition occurs in the unfluorinated 1-2-3 sample while the phase change is not observed in the fluorinated 1-2-3 samples. Superconducting transition temperature(T$_{c}$) increases with increasing YbF$_{3}$ content ; T$_{c}$, of the sample reaching maximum of 102K for x=0.3, and then decreases with further increasing YbF$_{3}$ content. The structural analysis and T$_{c}$ results shows that the fluorine doping stabilize the orthorhombic phase, together with the increase in T$_{c}$.}$ c/.TEX> c/.

  • PDF

Characterization of Thermo-optical Properties of Ferroelectric P(VDF-TrFE) Copolymer Using Febry-Perot Interferometer (Febry-Perot 간섭계를 이용한 강유전 P(VDF-TrFE) 폴리머 열광학 특성평가)

  • Song, Hyun-Cheol;Kim, Jin-Sang;Yoon, Seok-Jin;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.228-231
    • /
    • 2009
  • Phase transition in ferroelectric polymer is very interesting behavior and has been widely studied for real device applications, such as actuators and sensors. Through the phase transition, there is structural change resulting in the change of electrical and optical properties. In this study, we fabricated the Febry-Perot interferometer with the thin film of ferroelectric P(VDF-TrFE) 50/50 mol% copolymer, and thermo-optical properties were investigated. The effective thermo-optical coefficient of P(VDF-TrFE) was obtained as $2.3{\sim}3.8{\times}10^{-4}/K$ in the ferroelectric temperature region ($45^{\circ}C{\sim}65^{\circ}C$) and $6.0{\times}10^{-4}/K$ in the phase transition temperature region ($65^{\circ}C{\sim}85^{\circ}C$), which is a larger than optical silica-fiber and PMMA. The resonance transmission peak of P(VDF-TrFE) with the variation of temperature showed hysteretic variation and the phase transition temperature of the polymer in heating condition was higher than in the cooling condition. The elimination of the hysteretic phase transition of P(VDF-TrFE) is necessary for practical applications of optical devices.

Paraelectric-Ferroelectric Phase Transition of (NH4)2SO4 Single Crystals by 14N NMR

  • Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.63-66
    • /
    • 2017
  • The $^{14}N$ NMR spectra for $(NH_4)_2SO_4$ crystals were obtained near the phase transition temperature $T_C=223K$, and were found to precisely reflect the symmetry change in the crystal at this first-order phase transition. Changes in the resonance frequencies near $T_C$ were attributed to the structural phase transition. In the ferroelectric and paraelectric phases, two inequivalent NH4 groups were distinguished in the $^{14}N$ NMR spectra. The two types, $NH_4$(1) and $NH_4$(2), have slightly different local environments. Consequently, we conclude that the phase transition is caused by the change in the environment of the $^{14}N$ nuclei in the $NH_4$ groups, rather than by the $SO_4$ groups.

Structural change of cobalt dodecanesulfate (Cobalt dodecanesulfate의 구조변화)

  • 허영덕;권석순;김지현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.63-67
    • /
    • 2004
  • The layered structure of cobalt dodecanesulfate was synthesized. A phase transition takes place at various temperature ranges and results in a drastic change of the layer distance. A monolayer structure of cobalt dodecanesulfate at room temperature transformed to a bilayer structure as a dehydrated form at high temperature.

A Study on the Conducting Behavior of La-Ca-Mn-O in the vicinity of Phase Transition Temperature (임계점 부근에서 LCMO의 전도 특성에 대하여)

  • 송하정;김우진;권순주
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.179-184
    • /
    • 1998
  • Colossal magnetoresistance is closely related to (but is not) the abrupt change of electrical resistivity in the vicinity of Curie temperature, which is caused by the temperature dependent paramagnetic-ferromagnetic phase transition and concurrent change of electrical conducting mechanism. A resistivity-temperature equation is presented to fully describe the overall behavior, especially the abrupt change. The main ingredients of the equation are a simple effective media theory and a function for the temperature dependent fraction of ferromagnetic phase. The model fits very well to the measured resistivity-temperature curve of $La_{0.7}Ca_{0.3}MnO_3$.

  • PDF

Phase Transition Behaviors of Lead-Free Piezoelectric (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x (납이 포함되지 않은 압전 특성의 (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x 상전이 거동 연구)

  • Lee, Byoungwan;Luo, Haosu;Kim, Jung Kyu
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.101-109
    • /
    • 2020
  • In this study, the phase transition behaviors of lead-free (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x (NBT-BT) are investigated by using Brillouin spectroscopy. The elastic properties, sound velocity and absorption coefficient of NBT-BT are characterized as a function of temperature along different crystallographic axes. The temperature dependences of the elastic constants of NBT-BT near the morphotropic phase boundary are determined for the first time. The unpoled NBT-BT single crystals exhibits the typical relaxor behaviors, presenting broad acoustic and dielectric anomalies. The application of electric field induced discontinuous changes in the elastic properties at ~110℃, which indicates field-induced phase transition occurred. The electric field also changes the dielectric constant from more relaxor-like to ferroelectric-like dielectric behavior.

Phase Transition and Relaxor Behaviors in the Lead Magnesium Niobate-based Ferroelectrics (Pb(Mg1/3Nb2/3)O3-based 강유전체의 상전이 및 완화특성)

  • Kim, Y.J.;Lee, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Dielectric and pyroelectric properties of relaxor ferroelectric in the PMN-PT solid solution series have been investigated. Features of the diffuse phase transition in PMN-PT system, typical relaxor ferroelectric materials, were studied as a function of temperature and frequency. The transition temperature of the ceramics with PT$\sim$0.325 did not depend on the measuring frequency. This can best realized in a relatively random environment that apparently is provided by PMN-rich complex perovskites, including those containing Pb. The composition with PT>0.35 show the characteristics of a normal single phase ferroelectric material. Thus the studies revealed that the morphotropic phase boundary in the PMN-PT system is in the vicinity of PT$\sim$0.3 and it has a small curvature and as a result the compositions near the morphotropic phase boundary show two phase transitions, rhombohedral$\rightarrow$tetragonal$\rightarrow$cubic, when the samples are heated up to higher temperature. The best optimum compositions are observed near the morphotropic phase boundary.

Effect of Heat and Moisture on the Phase Transition in Dimethylammonium-Facilitated CsPbI3 Perovskite (다이메틸암모늄 유도 CsPbI3 페로브스카이트 상의 상전이 거동에 대한 열과 수분의 영향)

  • Sohyun Kang;Seungmin Lee;Jun Hong Noh
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.344-351
    • /
    • 2023
  • Cesium lead iodide (CsPbI3) with a bandgap of ~1.7 eV is an attractive material for use as a wide-gap perovskite in tandem perovskite solar cells due to its single halide component, which is capable of inhibiting halide segregation. However, phase transition into a photo inactive δ-CsPbI3 at room temperature significantly hinders performance and stability. Thus, maintaining the photo-active phase is a key challenge because it determines the reliability of the tandem device. The dimethylammonium (DMA)-facilitated CsPbI3, widely used to fabricate CsPbI3, exhibits different phase transition behaviors than pure CsPbI3. Here, we experimentally investigated the phase behavior of DMA-facilitated CsPbI3 when exposed to external factors, such as heat and moisture. In DMA-facilitated CsPbI3 films, the phase transition involving degradation was observed to begin at a temperature of 150 ℃ and a relative humidity of 65 %, which is presumed to be related to the sublimation of DMA. Forming a closed system to inhibit the sublimation of DMA significantly improved the phase transition under the same conditions. These results indicate that management of DMA is a crucial factor in maintaining the photo-active phase and implies that when employing DMA designs are necessary to ensure phase stability in DMA-facilitated CsPbI3 devices.

Phase Transition Study on Ilmenite under High Pressure and Temperature (고온-고압하에서 티탄철석에 대한 상면이 연구)

  • Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.161-169
    • /
    • 2002
  • high pressure and temperature conditions. However, those results are not consistent with one another, and phase boundary between ilmenite and perovskite phases determined only from the quenching method may be not so reliable at all. Therefore, in-situ high pressure-temperature (hP-T) X-ray diffraction measurements were performed up to 19 GPa and $700^{\circ}C$ in a large volume press apparatus using synchrotron radiation. Experimental results show that perovskite phase is stable at pressures above 16 GPa, and transforms back to $LiNbO_3$phase near 15 CPa at room temperature, and that the perovskite-ilmenite transition is back and forth near 15 CPa at $500^{\circ}C$. LiNbO$_3$phase transforms to ilmenite at 13 CPa and $300^{\circ}C$ and at 10.8 CPa and $400^{\circ}C$, respectively. These data indicate that $LiNbO_3$phase may have a stability region in the hP-T phase diagram and that the perovskite-ilmenite phase boundary would be quite different from that previously reported.