Phase Transition Study on Ilmenite under High Pressure and Temperature

고온-고압하에서 티탄철석에 대한 상면이 연구

  • Published : 2002.09.01

Abstract

high pressure and temperature conditions. However, those results are not consistent with one another, and phase boundary between ilmenite and perovskite phases determined only from the quenching method may be not so reliable at all. Therefore, in-situ high pressure-temperature (hP-T) X-ray diffraction measurements were performed up to 19 GPa and $700^{\circ}C$ in a large volume press apparatus using synchrotron radiation. Experimental results show that perovskite phase is stable at pressures above 16 GPa, and transforms back to $LiNbO_3$phase near 15 CPa at room temperature, and that the perovskite-ilmenite transition is back and forth near 15 CPa at $500^{\circ}C$. LiNbO$_3$phase transforms to ilmenite at 13 CPa and $300^{\circ}C$ and at 10.8 CPa and $400^{\circ}C$, respectively. These data indicate that $LiNbO_3$phase may have a stability region in the hP-T phase diagram and that the perovskite-ilmenite phase boundary would be quite different from that previously reported.

고온-고압 상태에서 티탄철석 ($FeTiO_3$)의 상변이에 대한 연구가 있었으나, 그 결과는 서로 일치하지 않고 있다. 특히, 티탄철석상과 페롭스카이트상의 상변이 경계는 담금방법에 의해 결정된 것으로 신뢰도에 의문이 제기되고 있다. 이러한 문제를 해결하기 위해, 고온-고압 현장상태에서 라지 볼륨 기기와 방사광을 이용하여 19 GPa와 $700^{\circ}C$의 범위에서 X선 회절실험을 시행하였다. 이러한 실험결과, 페롭스카이트상은 상온에서 16 CPa 이상의 압력에서 안정하며, 15 CPa 근처에서 $LiNbO_3$상으로 변이한다. 또한 이 두 고온-고압상은 $500^{\circ}C$에서는 순간적인 상변이를 하고 있다. $LiNbO_3$상은 각각 13 CPa 및 300'E와 10.8 GPa 및 400'E에서 티탄철석상으로 상변이 한다. 따라서 본 실험결과는 $LiNbO_3$상은 고온-고압하에서 안정 영역을 확보하고 있으며, 페롭스카이트-티탄철석상경계는 이전에 발표된 결과와는 매우 다르다는 것을 지시해주고 있다.

Keywords

References

  1. Dobrzhinetskaya, L., Green II, H.W., and Wang, S. (1996) Alpe Arami: A peridotite massif from depths of more than 300 kilometers. Science, 271, 1841-1845.
  2. Frost, B.R., Lindsley, D.H., and Andersen, OJ. (1988) Fe-Ti oxide-silicate equilibria: Assemblages with fayalite olivine. Am. Mineral., 73,727-740.
  3. Ishihara, S. (1977) Magnetic susceptibility of the magnetite and ilmenite series. Min. Geol., 27, 293-297.
  4. Ito, E. and Matsui, Y. (1979) High-pressure transformations in silicates, germanate and titanates with ABO$_3$ stoichiometry. Phys. Chem. Minerals, 4, 265-273.
  5. Leinenweber, K., Utsumi, W., Tsuchida, Y., Yagi, T., and Kurita, K. (1991) Unquenchable highpressure perovskite polymorphs of MnSiO$_3$ and FeTiO$_3$• Phys. Chem. Minerals, 18, 244-250.
  6. Linton, J.A., Fei, Y., and Navrotsky, A. (1997) Complete Fe-Mg solid solution in lithium niobate and perovskite structures in titanates at high pressures and temperatures. Am. Mineral., 82, 639-642.
  7. Liu, L. (1975) High pressure phase transformations and compressions of ilmenite and rutile: I. Experimental results. Phys. Earth Planet. Inter., 10, 167-176.
  8. Mehta, A., Leinenweber, K., Navrotsky, A., and Akaogi, M. (1994) Calorimetric study of high pressure polymorphism in FeTiO$_3$: Stability of the perovskite phase. Phys. Chem. Minerals, 21, 207-212.
  9. Ringwood, A.E. and Lovering, l.F. (1970) Significance of pyroxene-ilmenite intergrowths among kimberlite xenoliths. Earth Planet. Sci. Lett., 7,371-375.
  10. Syono, Y., Yamauchi, H., Ito, A., Sorneya, Y., Ito, E., Matsui, Y., Akaogi, M., and Akimoto, S. (1980) Magnetic properties of the disordered ilmenite FeTiO$_3$3 II synthesized at very high pressure, in FERRITES: Proceedings of International Conference. lapan, 236-239.
  11. Wechsler, B.A. and Prewitt, C.T. (1984) Crystal structure of ilmenite (FeTiO$_3$) at high temperature and at high pressure. Am. Mineral., 69,176-185.