• 제목/요약/키워드: Phase Loop Locked(PLL)

검색결과 414건 처리시간 0.074초

PLL Equivalent Augmented System Incorporated with State Feedback Designed by LQR

  • Wanchana, Somsak;Benjanarasuth, Taworn;Komine, Noriyuki;Ngamwiwit, Jongkol
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.161-169
    • /
    • 2007
  • The PLL equivalent augmented system incorporated with state feedback is proposed in this paper. The optimal value of filter time constant of loop filter in the phase-locked loop control system and the optimal state feedback gain designed by using linear quadratic regulator approach are derived. This approach allows the PLL control system to employ the large value of the phase-frequency gain $K_d$ and voltage control oscillator gain $K_o$. In designing, the structure of phase-locked loop control system will be rearranged to be a phase-locked loop equivalent augmented system by including the structure of loop filter into the process and by considering the voltage control oscillator as an additional integrator. The designed controller consisting of state feedback gain matrix K and integral gain $k_1$ is an optimal controller. The integral gain $k_1$ related to weighting matrices q and R will be an optimal value for assigning the filter time constant of loop filter. The experimental results in controlling the second-order lag pressure process using two types of loop filters show that the system response is fast without steady-state error, the output disturbance effect rejection is fast and the tracking to step changes is good.

루프 대역폭 조절기를 이용한 빠른 위상 고정 시간을 갖는 이중 루프 위상고정루프 (A Fast Locking Dual-Loop PLL with Adaptive Bandwidth Scheme)

  • 송윤귀;최영식
    • 대한전자공학회논문지SD
    • /
    • 제45권5호
    • /
    • pp.65-70
    • /
    • 2008
  • 본 논문에서는 루프 대역폭을 조절하여 빠른 위상 고정 시간을 갖는 새로운 구조의 이중 루프 위상고정루프를 제안하였다. 위상고정루프가 out-lock 상태일 때는 채널 간격의 1/10보다 더 큰 대역폭을 갖도록 하였으며, in-lock 부근에서는 채널 간격의 1/10 보다 더 작은 좁은 대역폭을 갖도록 하였다. 제안된 위상고정루프는 표준 CMOS $0.35{\mu}m$ 공정으로 HSPICE를 이용하여 설계 하였다. 시뮬레이션 결과 PLL의 대역폭을 200KHz 채널 간격 보다 14배 크게 하여 80MHz의 주파수를 변화시키는데 $50{\mu}s$의 빠른 위상고정 시간을 갖는 것으로 나타났다.

Analysis of Phase Error Effects Due to Grid Frequency Variation of SRF-PLL Based on APF

  • Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.18-26
    • /
    • 2016
  • This paper proposes a compensation algorithm for reducing a specific ripple component on synchronous reference frame phase locked loop (SRF-PLL) in grid-tied single-phase inverters. In general, SRF-PLL, which is based on all-pass filter to generate virtual voltage, is widely used to estimate the grid phase angle in a single-phase system. In reality, the estimated grid phase angle might be distorted because the phase difference between actual and virtual voltages is not 90 degrees. That is, the phase error is caused by the difference between cut-off frequency of all-pass filter and grid frequency under grid frequency variation. Therefore, the effects on phase angle and output current attributed to the phase error are mathematically analyzed in this paper. In addition, the proportional resonant (PR) controller is adapted to reduce the effects of phase error. The validity of the proposed algorithm is verified through several simulations and experiments.

주파수 체배기와 PLL을 이용한 10 GHz 생체 신호 레이더 시스템 (Novel 10 GHz Bio-Radar System Based on Frequency Multiplier and Phase-Locked Loop)

  • 명성식;안용준;문준호;장병준;육종관
    • 한국전자파학회논문지
    • /
    • 제21권2호
    • /
    • pp.208-217
    • /
    • 2010
  • 본 논문에서는 주파수 체배기와 위상 동기화 회로(Phase-Locked Loop: PLL)를 이용한 주파수 합성기를 이용한 10 GHz 대역에서 동작하는 생체 신호 레이더를 제안하였다. 제안된 10 GHz 대역 생체 레이더는 2.5 GHz 전압 제어 발진기와 PLL을 이용하여 발생된 위상 잡음 특성이 매우 뛰어나고 안정적인 정현 신호를 이용하여 뛰어난 생체 신호 검출 성능을 보인다. 또한 10 GHz 대역에서 PLL을 구현하기 어려운 점을 해결하기 위하여 2.5 GHz 대역에서 PLL을 이용하여 발생된 신호를 주파수 체배기를 이용하여 10 GHz 대역 신호를 발생시키는 방법을 제안하였다. 본 논문에서는 제안된 구조의 생체 레이더의 잡음 특성을 이론적으로 분석하여 제안된 구조의 타당성을 검증하였다. 실험 결과 100 cm까지 매우 우수한 생체 신호 검출이 가능하였으며, 이로서 제안된 구조의 10 GHz 대역의 생체 레이더의 타당성을 확인하였다.

A 40 Gb/s Clock and Data Recovery Module with Improved Phase-Locked Loop Circuits

  • Park, Hyun;Kim, Kang-Wook;Lim, Sang-Kyu;Ko, Je-Soo
    • ETRI Journal
    • /
    • 제30권2호
    • /
    • pp.275-281
    • /
    • 2008
  • A 40 Gb/s clock and data recovery (CDR) module for a fiber-optic receiver with improved phase-locked loop (PLL) circuits has been successfully implemented. The PLL of the CDR module employs an improved D-type flip-flop frequency acquisition circuit, which helps to stabilize the CDR performance, to obtain faster frequency acquisition, and to reduce the time of recovering the lock state in the event of losing the lock state. The measured RMS jitter of the clock signal recovered from 40 Gb/s pseudo-random binary sequence ($2^{31}-1$) data by the improved PLL clock recovery module is 210 fs. The CDR module also integrates a 40 Gb/s D-FF decision circuit, demonstrating that it can produce clean retimed data using the recovered clock.

  • PDF

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

  • Moon, Yongsam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권3호
    • /
    • pp.331-338
    • /
    • 2014
  • A charge-pump circuit using a current-bypass technique, which suppresses charge sharing and reduces the sub-threshold currents, helps to decrease phase-locked loop (PLL) jitter without resorting to a feedback amplifier. The PLL shows no stability issues and no power-up problems, which may occur when a feedback amplifier is used. The PLL is implemented in 0.11-${\mu}m$ CMOS technology to achieve 0.856-ps RMS and 8.75-ps peak-to-peak jitter, which is almost independent of ambient temperature while consuming 4 mW from a 1.2-V supply.

Improved DC Offset Error Compensation Algorithm in Phase Locked Loop System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1707-1713
    • /
    • 2016
  • This paper proposes a dc error compensation algorithm using dq-synchronous coordinate transform digital phase-locked-loop in single-phase grid-connected converters. The dc errors are caused by analog to digital conversion and grid voltage during measurement. If the dc offset error is included in the phase-locked-loop system, it can cause distortion in the grid angle estimation with phase-locked-loop. Accordingly, recent study has dealt with the integral technique using the synchronous reference frame phase-locked-loop method. However, dynamic response is slow because it requires to monitor one period of grid voltage. In this paper, the dc offset error compensation algorithm of the improved response characteristic is proposed by using the synchronous reference frame phase-locked-loop. The simulation and the experimental results are presented to demonstrate the effectiveness of the proposed dc offset error compensation algorithm.

디지털 록인앰프를 이용한 비정현 계통하에서 강인한 PLL 방법 (A Robust PLL Technique Based on the Digital Lock-in Amplifier under the Non-Sinusoidal Grid Conditions)

  • 아쉬라프 모하마드 노만;칸 아마드 레이안;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.104-106
    • /
    • 2018
  • The harmonics and the DC offset in the grid can cause serious synchronization problems for grid connected inverters (GCIs) which leads not able to satisfy the IEEE 519 and p1547 standards in terms of phase and frequency variations. In order to guarantee the smooth and reliable synchronization of GCIs with the grid, Phase Locked Loop (PLL) is the crucial element. Typically, the performance of the PLL is assessed to limit the grid disturbances e.g. grid harmonics, DC Offset and voltage sag etc. To ensure the quality of GCI, the PLL should be precise in estimating the grid amplitude, frequency and phase. Therefore, in this paper a novel Robust PLL technique called Digital Lock-in Amplifier (DLA) PLL is proposed. The proposed PLL estimate the frequency variations and phase errors accurately even in the highly distorted grid voltage conditions like grid voltage harmonics, DC offsets and grid voltage sag. To verify the performance of proposed method, it is compared with other six conventional used PLLs (CCF PLL, SOGI PLL, SOGI LPF PLL, APF PLL, dqDSC PLL, MAF PLL). The comparison is done by simulations on MATLAB Simulink. Finally, the experimental results are verified with Single Phase GCI Prototype.

  • PDF

A 32nm and 0.9V CMOS Phase-Locked Loop with Leakage Current and Power Supply Noise Compensation

  • Kim, Kyung-Ki;Kim, Yong-Bin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권1호
    • /
    • pp.11-19
    • /
    • 2007
  • This paper presents two novel compensation circuits for leakage current and power supply noise (PSN) in phase locked loop (PLL) using a nanometer CMOS technology. The leakage compensation circuit reduces the leakage current of the charge pump circuit which becomes more serious problem due to the thin gate oxide and small threshold voltage in nanometer CMOS technology and the PSN compensation circuit decreases the effect of power supply variation on the output frequency of VCO. The PLL design is based on a 32nm predictive CMOS technology and uses a 0.9V power supply voltage. The simulation results show that the proposed PLL achieves a 88% jitter reduction at 440MHz output frequency compared to the PLL without leakage compensator and its output frequency drift is little to 20% power supply voltage variations. The PLL has an output frequency range of $40M{\sim}725MHz$ with a multiplication range of 11023, and the RMS and peak-to-peak jitter are 5ps and 42.7ps, respectively.

All-Synthesizable 5-Phase Phase-Locked Loop for USB2.0

  • Seong, Kihwan;Lee, Won-Cheol;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권3호
    • /
    • pp.352-358
    • /
    • 2016
  • A 5-phase phase-locked loop (PLL) for USB2.0 applications was implemented by using an all-synthesis technique. The length of the time-to-digital converter for the fine phase detector was halved by the operation of a coarse phase detector that uses 5-phase clocks. The maximum time difference between the rising edges of two adjacent-phase clocks was 6 ps at 480 MHz. The PLL chip in a 65-nm process occupies $0.038mm^2$, consumes 4.8 mW at 1.2 V. The measured rms and peak-to-peak output jitters are 8.6 ps and 45 ps, respectively.