A three-dimensional pharmacophore hypothesis was developed for atypical antipsychotics in order to map common structural features of highly active compounds by using HipHop in CATALYST program. The pharmacophore hypotheses were generated using 12 compounds as training set and validated using 11 compounds as test set. The most predictive hypothesis (Hypo1) comprises five features viz. two hydrophobic regions, two hydrogen bond acceptor lipid and one aromatic ring. In the absence of information like crystallized structure of 5-$HT_{2A}$ receptor and binding mode of antipsychotics with 5-$HT_{2A}$ receptor, this hypothesis will serve as a potentially valuable tool in the design of novel atypical antipsychotics acting primarily at 5-$HT_{2A}$ and $D_2$ receptors.
Lee, Sangbae;Lee, Yuno;Briggs, James M.;Lee, Keun Woo
Bulletin of the Korean Chemical Society
/
v.34
no.7
/
pp.1972-1984
/
2013
Microtubules play an important role in intracellular transport, mobility, and particularly mitosis. Paclitaxel (Taxol$^{TM}$) and paclitaxel-like compounds have been shown to be anti-tumor agents useful for various human tumors. Paclitaxel-like compounds operate by stabilizing microtubules through interface binding at the interface between two ${\beta}$-tubulin monomers in adjacent protofilaments. In this paper we present the elucidation of the structural features of paclitaxel and paclitaxel-like compounds (e.g., epothilones) with microtubule stabilizing activities, and relate their activities to spatial and chemical features of the molecules. CATALYST program was used to generate three-dimensional quantitative structure activity relationships (3D-QSARs) resulting in 3D pharmacophore models of epothilone- and paclitaxel-derivatives. Pharmacophore models were generated from diverse conformers of these compounds resulting in a high correlation between experimental and predicted biological activities (r = 0.83 and 0.91 for epothilone and paclitaxel derivatives, respectively). On the basis of biological activities of the training sets, five- and four-feature pharmacophore hypotheses were generated in the epothilone and paclitaxel series. The validation of generated hypotheses was achieved by using twelve epothilones and ten paclitaxels, respectively, which are not in the training sets. The clustering (grouping) and merging techniques were used in order to supplement spatial restrictions of each of hypothesis and to develop more comprehensive models. This approach may be of use in developing novel inhibitor candidates as well as contributing a better understanding of structural characters of many compounds useful as anticancer agents targeting microtubules.
A three-dimensional pharmacophore model was developed based on 24 currently available inhibitors, which were rationally selected from 472 compounds with diverse molecular structure and bioactivity, for generating pharmacophore of uPA (Urokinase Plasminogen Activator) inhibitors. The best hypothesis (Hypo1) comprised of five features, namely, one positive ionizable group, one hydrogen-bond acceptor group and three hydrophobic aromatic groups. The correlation coefficient, root mean square deviation and cost difference were 0.973, 0.695, and 94.291 respectively, suggesting that a highly predictive pharmacophore model was successfully obtained. The application of the model showed great success in predicting the activities of 251 known uPA inhibitors (test set) with a correlation coefficient of 0.837, and there was also none of the outcome hypotheses that had similar cost difference and RMS deviation (RMSD) with that of the initial hypothesis generated by Cat-Scramble validation test with 95% confidence level. Accordingly, our model should be reliable in identifying structurally diverse compounds with desired biological activity.
Identification of the selective chemical features for Aurora-B inhibitors gained much attraction in drug discovery for the treatment of cancer. Hence to identify the Aurora-B critical features various techniques were utilized such as pharmacophore generation, virtual screening, homology modeling, molecular dynamics, and docking. Top ten hypotheses were generated for Aurora-B and Aurora-A. Among ten hypotheses, HypoB1 and HypoA1 were selected as a best hypothesis for Aurora-B and Aurora-A based on cluster analysis and ranking score, respectively. Test set result revealed that ring aromatic (RA) group in HypoB1 plays an essential role in differentiates Aurora-B from Aurora-A inhibitors. Hence, HypoB1 used as 3D query in virtual screening of databases and the hits were sorted out by applying drug-like properties and molecular docking. The molecular docking result revealed that 15 hits have shown strong hydrogen bond interactions with Ala157, Glu155, and Lys106. Hence, we proposed that HypoB1 might be a reasonable hypothesis to retrieve the structurally diverse and selective leads from various databases to inhibit Aurora-B.
Antagonists of the d -opioid receptor are effective in overcoming resistance against analgesic drugs such as morphine. To identify novel antagonists of the d -opioid receptor that display high potency and low resistance, we performed 3D-QSAR analysis using chemical feature-based pharmacophore models. Chemical features for d -opioid receptor antagonists were generated using quantitative (Catalyst/HypoGen) and qualitative (Catalyst/HipHop) approaches. For HypoGen analysis, we collected 16 peptide and 16 non-peptide antagonists as the training set. The best-fit pharmacophore hypotheses of the two antagonist models comprised identical features, including a hydrophobic aromatic (HAR), a hydrophobic (HY), and a positive ionizable (PI) function. The training set of the HipHop model was constructed with three launched opioid drugs. The best hypothesis from HipHop included four features: an HAR, an HY, a hydrogen bond donor (HBD), and a PI function. Based on these results, we confirm that HY, HAR and PI features are essential for effective antagonism of the d -opioid receptor, and determine the appropriate pharmacophore to design such antagonists.
Adenosine kinase (AK) is a ubiquitous intracellular enzyme, which catalyzes the phosphorylation of adenosine (ADO) to adenosine monophosphate (AMP). AK inhibitors have therapeutic potential as analgesic and antiinflammatory agents. A chemical feature based pharmacophore model has been generated from known AK inhibitors (26 training set compounds) by HypoGen module implemented in CATALYST software. The top ranked hypothesis (Hypo1) contained four features of two hydrogen-bond acceptors (HBA) and two hydrophobic aromatics (Z). Hypo1 was validated by 124 test set molecules with a correlation coefficient of 0.905 between experimental and estimated activity. It was also validated by CatScramble method. Thus, the Hypo1 was exploited for searching new lead compounds over 238,819 chemical compounds in NCI database and then the selected compounds were screened based on restriction estimated activity and Lipinski's rules to evaluate their drug-like properties. Finally we could obtain 72 new lead candidates and the two best compound structures from them were posted.
Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR (quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group around ring B may enhance the inhibitory activity.
Peroxisome proliferator-activated receptors (PPARs) are members of nuclear receptors and their activation induces regulation of fatty acid storage and glucose metabolism. Therefore, the $PPAR\gamma$ is a major target for the treatment of type 2 diabetes mellitus. In order to generate pharmacophore model, 1080 known agonists database was constructed and a training set was selected. The Hypo7, selected from 10 hypotheses, contains four features: three hydrogen-bond acceptors (HBA) and one general hydrophobic (HY). This pharmacophore model was validated by using 862 test set compounds with a correlation coefficient of 0.903 between actual and estimated activity. Secondly, CatScramble method was used to verify the model. Hence, the validated Hypo7 was utilized for searching new lead compounds over 238,819 and 54,620 chemical structures in NCI and Maybridge database, respectively. Then the leads were selected by screening based on the pharmacophore model, predictive activity, and Lipinski's rules. Candidates were obtained and subsequently the binding affinities to $PPAR\gamma$ were investigated by the molecular docking simulations. Finally the best two compounds were presented and would be useful to treat type 2 diabetes.
Silent information regulator 2 (Sir2) or sirtuins are NAD(+)-dependent deacetylases, which hydrolyze the acetyllysine residues. In mammals, sirtuins are classified into seven different classes (SIRT1-7). SIRT1 was reported to be involved in age related disorders like obesity, metabolic syndrome, type II diabetes mellitus and Parkinson’s disease. Activation of SIRT1 is one of the promising approaches to treat these age related diseases. In this study, we have used HipHop module of CATALYST to identify a series of pharmacophore models to screen SIRT1 enhancing molecules. Three molecules from Sirtris Pharmaceuticals were selected as training set and 607 sirtuin activator molecules were used as test set. Five different hypotheses were developed and then validated using the training set and the test set. The results showed that the best pharmacophore model has four features, ring aromatic, positive ionization and two hydrogen-bond acceptors. The best hypothesis from our study, Hypo2, screened high number of active molecules from the test set. Thus, we suggest that this four feature pharmacophore model could be helpful to screen novel SIRT1 activator molecules. Hypo2-virtual screening against Maybridge database reveals seven molecules, which contains all the critical features. Moreover, two new scaffolds were identified from this study. These scaffolds may be a potent lead for the SIRT1 activation.
A three dimensional pharmacophore model was generated for the molecules which are responsible for anti-inflammatory activities targeting Interleukin-2 inducible tyrosine kinase (Itk). 16 structurally diverse molecules were selected as training set to generate the hypotheses using Discovery Studio v2.1. The best hypothesis, Hypo1, comprises two hydrogen bond acceptor (HBA), one hydrophobic aromatic (HA), one ring aromatic (RA) and shows high cost difference (63.71), high correlation coefficient (0.97) as well as low RMS deviation (0.81). Hypo1 has been further validated toward a test set, decoy set and Fischer's randomization method. Furthermore, Hypo1 was used to screen NCI and Maybridge databases. Finally, 2 hit molecules were identified as potential leads against Itk, which may be useful for future drug development.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.