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Antagonists of the ^-opioid receptor are effective in overcoming resistance against analgesic drugs such as 
morphine. To identify novel antagonists of the ^-opioid receptor that display high potency and low resistance, 
we performed 3D-QSAR analysis using chemical feature-based pharmacophore models. Chemical features for 
^-opioid receptor antagonists were generated using quantitative (Catalyst/HypoGen) and qualitative (Catalyst/ 
HipHop) approaches. For HypoGen analysis, we collected 16 peptide and 16 non-peptide antagonists as the 
training set. The best-fit pharmacophore hypotheses of the two antagonist models comprised identical features, 
including a hydrophobic aromatic (HAR), a hydrophobic (HY), and a positive ionizable (PI) function. The 
training set of the HipHop model was constructed with three launched opioid drugs. The best hypothesis from 
HipHop included four features: an HAR, an HY, a hydrogen bond donor (HBD), and a PI function. Based on 
these results, we confirm that HY, HAR and PI features are essential for effective antagonism of the ^-opioid 
receptor, and determine the appropriate pharmacophore to design such antagonists.
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Introduction

Opioid receptors comprise part of the G-protein coupled
1 receptor (gpcr) superfamily, and are characterized by

seven transmembrane regions. Three major types of opioid 
receptors (S, k, and 貽 have been identified to date,2 but 
their mechanisms of action remain to be established. The 卩- 
opioid receptor is located in the central nervous system 
(CNS), while the S-opioid receptor is related the peripheral 
nervous system.3,4 Their endogenous ligands, “opioids” 
(enkephalins, endorphins, dynorphins, and endomorphins) 
are involved in several important physiological functions, 
including nociception, autonomic reflexes, neuroendocrine 
effects, and thermoregulation.5,6

Several analgesic drugs, including morphine, are com­
monly used to reduce pain stemming from cancer or nervous 
damage. However, resistance to these drugs results in seri­
ous problems, which diminishes their anesthetic effects.7,8 
Considerable efforts have been devoted to obtain opioids 
that operate via specific receptors, with a view to identifying 
analgesics possessing a reduced side-effect profile relative to 
morphine.9 While all three major opioid receptors are 
important targets for developing therapies to treat acute pain, 
only the ^-opioid receptor appears to be involved in 
morphine tolerance and addiction.10,11 However, opiate 
tolerance and physical dependence can be blocked by S- 
opioid receptor antagonists without compromising anti­
nociception induced by drug interactions with ^-opioid 
receptors. The development of selective antagonists of S- 
opioid receptors over the past decade has revealed inter­
esting physiological roles of this receptor, including a 

modulatory effect on the ^-opioid receptor. Moreover, S- 
opioid receptor knockout mice display no tolerance to 
morphine, and an antagonist of S-opioid effectively abolishes 
resistance against analgesic drugs.12-15 Thus, the develop­
ment of agents with potent S-opioid receptor antagonist 
activity is essential in modern healthcare.16,17

In the CatalystTM (Accelrys, San Diego, CA), a pharmaco­
phore is referred to as a “hypothesis” to reflect the fact that 
generated models do not necessarily represent the true 
pharmacophore.18 Catalyst/HypoGen uses a combination of 
QSAR and pharmacophore methods.18,19 This analysis 
requires a full range of test compounds (from active to 
inactive), along with their measured activities derived from 
experimental data. The combination technique not only 
identifies a query compound as ‘active’ or ‘inactive’ in the 
tradition of a pharmacophore model, but also predicts 
activity based on regression of the training dataset, ana­
logous to the capability of a QSAR model. On the other 
hand, Catalyst/HipHop attempts to identify common mole­
cular features based on the superposition of active com- 
pounds.20,21 This method merely requires the input of active 
molecules without use of activity data, and results are ranked 
by tendency of molecular fitting to the proposed hypothesis, 
as well as matched features.20

In this point, there is a medical need to develop 3D- 
QSAR22,23 models and identify pharmacophores to establish 
the essential structural and electronic features for S-opioid 
receptor antagonist activity.

In this study, we performed a structure-based approach to 
identify the optimal pharmacophore from a set of ligands 
using 3D-QSAR to refine the receptor model and increase
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Table 1. Training set of peptide ^-opioid antagonists of Dmt-Tic derivatives for HypoGen generation (Activities are presented as K values)

1 (Ki : 0.022nM) 2 (Ki : 0.076nM) 3 (Ki : 0.118nM) 4 (Ki : 0.136nM)

5 (Ki : 0.203nM) 6 (Ki : 0.309nM) 7 (Ki : 0.383nM) 8 (Ki : 3.19nM)

9 (Ki : 5.74nM) 10 (Ki : 11.2nM) 11 (Ki : 12.97nM) 12 (Ki : 43.5nM)

13 (Ki : 74.7nM) 14 (Ki : 106.1nM) 15 (Ki : 107.8nM) 16 (Ki : 123.9nM)

the probability of identifying the most important features for 
ligand recognition by comparing quantitative (Catalyst/ 
HypoGen) and qualitative (Catalyst/HipHop) methods.24 
These approaches have been successfully applied to Dmt- 
Tic derivatives25,26 and Naltrindole analogs.27,28

Methods

Cat지yst/HypoGen. Training set is selected to generate 
hypotheses by considering structural diversity and wide 
coverage of the activity range. In this study, we constructed 
two training sets for HypoGen. The first set consisted of 
peptide antagonists (Peptide) of the 3-opioid receptor that 
are derivatives of Dmt-Tic, and the second set is contained 
non-peptide antagonists (nPeptide) that are analogs of 
Naltrindole. These two sets included sixteen compounds that 
satisfy the selection rule for HypoGen generation.24 The 
secondary structures and activity values of the two sets are 
listed below in Tables 1 and 2. Eleven chemical features 
were obtained from the CatalystTM program. We selected five 
feasible features-hydrogen bond acceptor (HBA), hydro­
phobic (HY), hydrophobic aliphatic (HAL), hydrophobic 
aromatic (HAR), and positive ionizable (PI) functions-based 
on analysis of the structurally and chemically important 
parts of the compounds. All ten hypotheses were proposed 
using HypoGen sorted according to the fitting and energy 
cut-off values with compounds within the training set.

Cat지yst/HipHop. HipHop generates conformational 
models for each molecule in the training set. Each conformer 
was examined for the presence of chemical features that are 
important in drug-enzyme (or receptor) interactions provid­
ed by CatalystTM.21 The common features of HipHop are 
hydrogen bond donors (HBD) and acceptors (HBA), negative 
and positive charge centers, and hydrophobic regions. In the 
final step, a three-dimensional configuration of chemical 
features common to input molecules was determined.21 In 
this study, three launched opioid drugs (Naloxone,29 Triazo- 
lam,30 and Cyclazocine31) were selected as a training set to 
generate hypotheses. The structures and activities of the 
three drugs are presented in Table 3.

We analyzed specific characteristics of the included 
features and compared the distance of each chemical feature 
for the best hypotheses obtained from the two different 
generation methods, HypoGen and HipHop.

Computation지 Methodology. Three-dimensional struc­
tures of compounds were generated and minimized using the 
Catalyst™ software package (Accelrys, San Diego, CA). 
CatalystTM provides two different conformer generation 
methods, Best and Fast. Best generation method searches the 
conformational space more extensively than Fast generation 
and it applies more rigorous minimization procedures in 
both torsional and cartesian space.24 Fast generation searches 
conformations more roughly, therefore it spends consider­
ably less computational time than Best.24
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Table 2. Training set molecules of non-peptide ^-opioid antagonists of Naltrindole analogs for HypoGen generation (Activities are 
presented as K values)

1 (Ki : 0.51nM) 2 (Ki : 0.62nM) 3 (Ki : 0.71nM) 4 (Ki : 1.1nM)

5 (Ki : 2.0nM) 6 (Ki : 3.8nM) 7 (Ki : 4.7nM) 8 (Ki : 8.2nM)

9 (Ki : 16.0nM) 10 (Ki : 21.8nM) 11 (Ki : 61nM) 12 (Ki : 218nM)

13 (Ki : 515nM) 14 (Ki : 1605nM) 15 (Ki : 2400nM) 16 (Ki : 3400nM)

Table 3. Training set of three launched opioid drugs for HipHop 
generation

Naloxone Triazolam Cyclazocine

In this study, conformer generation was performed using 
Best generation method and the maximum number of con­
formers was determined as 250 within a 20 kcal/mol cutoff 
range. All conformations in the training sets were minimized 
to the find local minimum based on CHARMm force field 
and conformational analysis of each compound was imple­
mented using the Poling algorithm for the search into 
unexplored regions of conformer space.32,33 All other para­

meters were used according to their default values. These 
computational studies were performed on a Silicon Graphics 
O2 R12000 workstation.

Results and Discussion

HypoGen: Ligand-Based Pharmacophore Model. The 
HypoGen pharmacophore model identifies chemical func­
tional features that are typical of active compounds, thus 
facilitating their differentiation from inactive compounds.24 
Two training sets were selected by considering the structural 
diversity which represented covering a range of activities at 
least four orders of magnitude. Activity range of peptide 
antagonist is wide coverage in terms of Ki value from 0.002 
nM to 120 nM and non-peptide antagonist model is 
populated from 0.51 nM to 3400 nM. Hypotheses were 
generated for each peptide and non-peptide antagonist of the 
3-opioid receptor, and the training set was submitted to a 
score hypothesis. We estimated the activities of all training 
set compounds using this hypothesis.24 HypoGen produced
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Table 4. Actual and estimated activities of the peptide antagonist 
set based on Hypo1

Peptide
Confor­
mation 

Number
Act.a Est.4 Error Fit 

Value
Act.

Scalec
Est.

Scaled

1 72 0.022 0.15 +6.7 14.52 +++ +++
2 193 0.076 0.099 +1.3 14.69 +++ +++
3 4 0.12 0.12 -1.0 14.63 +++ +++
4 74 0.14 0.039 -3.5 15.10 +++ +++
5 45 0.2 0.26 +1.3 14.27 +++ +++
6 4 0.31 0.25 -1.2 14.29 +++ +++
7 6 0.38 0.3 -1.3 14.21 +++ +++
8 52 3.2 1.7 -1.9 13.46 ++ ++
9 13 5.7 12 +2.2 12.59 ++ ++

10 29 11 21 +1.9 12.36 ++ +
11 206 13 26 +2.0 12.27 ++ +
12 65 43 76 +1.7 11.81 ++ +
13 109 75 51 -1.5 11.98 ++ +
14 42 110 71 -1.5 11.84 + +
15 134 110 41 -2.6 12.08 + +
16 44 120 47 -2.6 12.01 + +

aAct. Actual (Experimental) activity (nM). ”Est. Estimated activity (nM). 
c Act. scale: Activity scale +++ highly active (< 1 nM), ++ moderately 
active (1-100 nM), + inactive (> 100 nM). d Est. Scale Estimated activity 
scale

Table 5. Actual and estimated activities of the non-peptide 
antagonist set based on nHypo1

nPeptide
Confor­
mation 
number

Fit 
Value Act. a Est. 4 Error Act.

Scalec
Est.

Scaled

1 24 11.73 0.51 1.2 +2.3 +++ ++
2 16 11.39 0.62 2.6 +4.1 +++ ++
3 22 11.37 0.71 2.7 +3.8 +++ ++
4 12 11.15 1.1 4.4 +4.0 ++ ++
5 7 11.75 2 1.1 -1.8 ++ ++
6 8 11.39 3.8 2.6 -1.5 ++ ++
7 11 11.11 4.7 4.9 -1.0 ++ ++
8 2 11.54 8.2 1.8 -4.5 ++ ++
9 18 11.15 16 4.5 -3.6 ++ ++

10 10 10.59 22 16 -1.3 ++ ++
11 5 10.08 61 53 -1.2 ++ ++
12 3 8.55 220 1800 +8.2 + +
13 4 8.98 520 660 +1.3 + +
14 7 8.72 1600 1200 -1.3 + +
15 6 8.87 2400 860 -2.8 + +
16 5 9.08 3400 520 -6.5 + +

aAct. Actual (Experimental) activity (nM). ”Est. Estimated (predicted) 
activity (nM). c Act. Scale (Activity scale); +++ highly active (< 1 nM), 
++ moderately active (1-100 nM), + inactive (> 100 nM). dEst. Scale 
Estimated activity scale

the top 10 scoring hypotheses, of which Hypo1 was the best 
hypothesis. Hypo1 exhibits the best correlation coefficient, 
highest cost difference, lowest error cost, closest weight cost 
to 2, and a correlation of 96% and 98% between actual (or 
experimental) and estimated (or predicted) activities, as 
shown in Tables 4 and 5. The fit value is high when each 

chemical feature in the hypothesis matches the active part of 
the ligand to a reasonable extent. All compounds in both 
training sets were classified into three activity scales, for 
example: highly active (< 1 nM, +++), moderately active (1­
100 nM, ++), and inactive (>100 nM, +). Out of the 16 
compounds in the peptide antagonist model, three moder­
ately active peptides were predicted as inactive, and within 
the non-peptide antagonist training set, three highly active 
non-peptide compounds were predicted as moderately 
active. The degree of activity of compounds in both training 
sets was predicted accurately. In the peptide antagonist 
model, the total fixed cost of 10 hypotheses was 60.75, and 
the null cost was 112.65. Thus, the range between the fixed 
and null costs was 51.90. When this range is over 60 bits, the 
hypotheses are very credible with 90% reliability, and at 
over 40 bits, reliability is about 75%.24,34 The correlation 
coefficient of Hypo1, 0.957, shows good correlation by 
linear regression of the geometric fit index. The RMSD 
value indicates the degree of reliability of the prediction for 
the training set. In this model, the RMSD of Hypo1 was 
0.7142, signifying good prediction.

The best hypothesis, Hypo1, comprised five features, one 
HAR, two HAL, one HBD, and one PI function. Chemical 
features included in Hypo1 matched well the known essen­
tial characteristics of opioid receptor antagonists, such as the 
aromatic hydrophobic part of Tyr, hydrophobic region of 
Phe, and positive ionizable function of the nitrogen atom of 
the amine group.35,36 The most active peptide antagonist in 
the training set, Peptide 1, exhibits a good fit with all five 
features of Hypo1. Two HARs in Hypo1 are mapped to the 
phenyl ring of Dmt and Tic regions in the peptide ligand. 
HY is mapped to a methyl group of Dmt, HBD fits to the 
carboxylic acid of Tic, and PI fits to an amine group. The 
least active peptide antagonist, Peptide 16, exhibits a low fit 
value with Hypo1, and in particular, HBD or HY is not 
matched with any part of Peptide 16 and rest low active 
peptides in the training set. Mapping models between Hypo1 
and Peptide 1, and Hypo1-Peptide 16 are depicted in Figure 
2. The positive charge of nitrogen on an amine group and 
aromatic ring region of the ligand, essential features for anta­
gonism of the 5-opioid receptor, are effectively represented 
in Hypo1.

In the non-peptide model, the total fixed cost of 10 
hypotheses is 67.47, and the null cost is 109.89. Thus, the 
range between the fixed and null costs is 42.42 bits. As 
mentioned above, these data confirm that the top 10 hypo­
theses effectively describe the training set. The best hypo­
thesis from the non-peptide model (designated nHypo1) 
consisted of four chemical features, specifically, one HY, 
one HAR, one HAL, and one PI. The correlation coefficient 
of nHypo1 is 0.92, and RMSD is 1.0203. Figure 1(b) 
represents the correlation diagram. The nHypo1 hypothesis 
satisfied conditions for the aromatic ring and positive 
charged regions, similar to Hypo1. HAR or HY of nHypo1 
is not mapped with any part of low activity non-peptide 
antagonists, this may explain the reason why the fit value of 
low activity antagonists is not good. Mapping models of
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Figure 1. Regression diagram of actual versus estimated activities 
by Hypo1 for the training set. (a) Peptide antagonist model (b) 
Non-peptide antagonist model.
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Figure 2. Mapping of the (a) highly active peptide ligand (Peptide 
1) and (b) peptide ligand (Peptide 16) with lowest activity onto 
Hypo1.

nHypo1 and non-peptide antagonists are presented in Figure 
3.

Among the two hypotheses (Hypo1 and nHypo1), only 
three features corresponded to those of an opioid antagonist, 
specifically, a hydrophobic region, an aromatic ring, and a 
positively charged nitrogen region. The aromatic ring region 
of the peptide model was defined as ‘hydrophobic aromatic’ 
(HAR), and similar feature was substituted for the hydro­
phobic (HY) function in the non-peptide model. PI is 
commonly defined as a nitrogen atom in both models. In 
Figure 4, we compare the distance and location of identical 
features between Hypo1 and nHypo1. Three identical features 
formed a triangular shape. The distances and locations of all 
features were similar between the two hypotheses. The 
average distance was 5.76 A for HY-PI, 5.19 A for HAR-PI, 
and 7.38 A for HY-HAR. The distance between HY and 
HAR in the peptide model was shorter than that in the non­
peptide model. This may explain why the conformation of 
peptide antagonist is more flexible than that of the non­

Figure 3. Mapping of the (a) highly active non-peptide ligand 
(nPeptide 1) and (b) non-peptide ligand (nPeptide 16) with lowest 
activity onto nHypo1.
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Figure 4. Comparison of the two hypotheses from HypoGen. (a) 
Hypol, the best hypothesis from the peptide antagonist model. (b) 
nHypo1, the best hypothesis from the non-peptide antagonist 
model.

peptide antagonist.
HipHop: Common Feature-based Pharmacophore 

Model. To determine the most advantageous pharmaco­
phore in the design of opioid drugs, we additionally applied 
the Catalyst/HipHop method to generate a qualitative com­
mon feature model, and compared the hypothesis obtained 
with HypoGen. HipHop generates hypotheses based on only 
the identification and overlay of common features using 
known active ligands, and not activity data. Accordingly, we 
selected three launched opioid drugs for the training set, 
Naloxone, Triazolam, and Cyclazocine. There are non­
opioid CNS drugs generally used to reduce the rates of fatal 
overdose associated with high concentrations of morphine- 
like drugs. To predict a more common pharmacophore, we 
selected these drugs by considering a maximized structural 
diversity. Structures of these three drugs are depicted in 
Table 3. The best hypothesis from HipHop (hHypo) con­
sisted of a HAR, a HY, a HBD, and a PI, similar to that from 
HypoGen. The important features of hHypo were well 
characterized in the results of both HypoGen and HipHop. 
To identify common features among the three hypotheses 
(Hypo1, nHypo 1, and hHypo), we superimposed the 
pharmacophores, as shown in Figure 5. Remarkably, on 
attempting to fit both training sets of HypoGen onto hHypo, 
we perceived that the most active peptide (Peptide 1) and 
non-peptide (nPeptide 1) antagonists mapped well onto 
hHypo in terms of all the specified features. The mapping 
models of Peptide 1 and nPeptide 1 onto hHypo are 
presented in Figure 6. Accordingly, we propose that the three 
hypotheses determined using HypoGen and HipHop reveal 
essential pharmacophore features for the antagonism of 8-

Figure 5. Superimposition of three hypotheses generated from 
HypoGen and HipHop. (a) Peptide 1 (b) nPeptide 1.

Figure 6. Mapping of (a) Peptide1 and (b) nPeptide 1 onto the best 
hypothesis from HipHop (hHypo).

opioid receptor activity, which should aid in the effective 
design of highly potent 8-opioid receptor antagonists.

Conclusions

In this study, we performed 3D-QSAR for 8-opioid receptor 
antagonists with the aid of quantitative and qualitative 
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pharmacophore models applying two different ligand-based 
pharmacophore generation approaches. For the HypoGen 
experiments, we constructed two training sets for peptide 
and non-peptide antagonists, respectively. The best hypo­
theses, Hypo1 and nHypo1, disclosed identical features, 
including an aromatic ring region and a positive charged 
nitrogen region, consistent with the essential characteristics 
of opioid antagonists. HipHop was performed using three 
launched opioid drugs as the training set. The best hypo­
thesis, hHypo consisted of four common features (one 
hydrophobic aromatic, one hydrophobic, a hydrogen bond 
donor, and a positive ionizable function). The three hypo­
theses, Hypo 1, nHypo 1, and hHypo, exhibited three com­
mon features, specifically, a hydrophobic, a hydrophobic 
aromatic, and a positive nitrogen region. Our results support 
the utility of the essential pharmacophore features obtained 
with these hypotheses, which effectively describe the 
structure-activity relationship for antagonists of the 5-opioid 
receptor.
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