• 제목/요약/키워드: Phage-host range

검색결과 30건 처리시간 0.027초

Bacollis cereis의 RK-용원파아지에 관한 연구 (Studies on the RK-temperate phage of bacillus cereus)

  • 이태우
    • 미생물학회지
    • /
    • 제23권2호
    • /
    • pp.129-137
    • /
    • 1985
  • The RK-temperate phage which infected with Bacillus cereus was isolated and the characters were investigated. The induction of RK-temperate phage from host bacterium attained by ultraviolet light irradiation (15W, 30cm, 30-120sec) and mitomycin C treatment (0.2-2 ug/ml). The host range of RK-temperate phage was not revealed with lysogenic and related strains of B. cereus. But B. cereus(PS) 352 which obtained by N-nitrosoguanidine treatment (1,000{$\mu}g/ml)$ to phage infected with host bacteria was sensitive bacteria of RK-temperate phage. RK-temperate phage was stabilized at the condition of nutrient broth (pH 7-8), Tris-buffer (pH 7-8) and ammonium buffer (pH 8-9) and Sorensen's phosphate buffer (pH 6-7), but unstabilized at other salt solutions and pH range. Also, thermostability was to $45^{\circ}C$ but unstabilized at above $50^{\circ}C$. At RK-temperate phage, the measurment values of head, neck, mid tail and end tail were 59nm, $9{\times}16nm,\;10{\times}189nm,\;and\;10{\times}14nm$ respectively. The morphology of head was regular polyhedron, and the end tail was coneate form. On the one hand, the number of capsid protein layer of tail were consist of 4, 35, and 1 at neck, mid tail, and end tail, respectively. RK-temperate phage was identified with DNA phage and G+C contents were 38.63. The latent time of RK-temperate phage was 30 minutes and the burst size was 70-80. And the host bacteria was lysed in case of multi-infection, above moi 1.

  • PDF

미생물에 의한 벤제노이드의 분해 (Degradation of Benzenoids by Microorganisms)

  • 권영명;하영칠
    • 미생물학회지
    • /
    • 제16권2호
    • /
    • pp.79-89
    • /
    • 1978
  • The RK-temperate phage which infected with Bacillus cereus was isolated and the characters were investigated. The induction of RK-temperate phage from host bacterium attained by ultraviolet light irradiation (15W, 30cm, 30-120sec) and mitomycin C treatment (0.2-2 ug/ml). The host range of RK-temperate phage was not revealed with lysogenic and related strains of B. cereus. But B. cereus(PS) 352 which obtained by N-nitrosoguanidine treatment(1,000.$\mu$g/ml) to phage infected with host bacteria was sensitive bacteria of RK-temperate phage. RK-temperate phage was stabilized at the condition of nutrient broth (pH 7-8), Tris-buffer (pH 7-8) and ammonium buffer (pH 8-9) and Sorensen's phosphate buffer (pH 6-7), but unstabilized at other salt solutions and pH range. Also, thermostability was to 45.deg.C but unstabilized at above 50.deg.C. At RK-temperate phage, the measurment values of head, neck, mid tail and end tail were 59nm, 9*16nm, 10*189nm, and 10*14nm respectively. The morphology of head was regular polyhedron, and the end tail was coneate form. On the one hand, the number of capsid protein layer of tail were consist of 4, 35, and 1 at neck, mid tail, and end tail, respectively. RK-temperate phage was identified with DNA phage and G+C contents were 38.63. The latent time of RK-temperate phage was 30 minutes and the burst size was 70-80. And the host bacteria was lysed in case of multi-infection, above moi 1.

  • PDF

The Effect of Environmental Factors on Phage Stability and Infectivity on Their Host Bacteria: a Case Study for an Escherichia coli Phage (T7), a Listeria Phage (A511), and a Salmonella Phage (Felix O1)

  • Kim, Kwang-Pyo
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.398-403
    • /
    • 2007
  • The effectiveness of phage biocontrol depends on the activity of bacteriophage in a given environment. In order to investigate the infectivity and the stability of bacteriophages in representative environments, three virulent phages, Listeria phage A511, Salmonella phage Felix O1, and Escherichia coli phage T7, were subjected to different temperatures, pHs and salt concentrations (NaCl). Phage infectivity was also determined in the presence of divalent cations ($Mg^{2+}$ or $Ca^{2+}$). As a result, three phages exhibited a wide range of survival rates under various environments. Phage infectivity was directly correlated with bacterial growth under the applied conditions. One exception was Felix O1 that did not kill Salmonella grown in low pH (4.5). The failure was attributed to defective adsorption of Felix O1. This finding is significant as it provides an explanation for the inefficient phage biocontrol. Therefore, such information is crucial to improve phage biocontrol of pathogens.

박테리오파지 저항성을 갖는 Pseudomonas tolaasii 변이주 분리 및 이들의 병원특성 (Isolation of bacteriophage-resistant Pseudomonas tolaasii strains and their pathogenic characters)

  • 박수진;한지혜;김영기
    • Journal of Applied Biological Chemistry
    • /
    • 제59권4호
    • /
    • pp.351-356
    • /
    • 2016
  • 세균성 갈반병은 느타리버섯(Pleurotus ostreatus)의 주된 병중의 하나이다. 박테리오파지를 이용한 파지테라피 방법은 병원균의 농도를 감소시켜 병없는 재배사를 만드는데 성공적이었다. 병원균 사멸을 위한 파지의 이용은 숙주균의 특이성 때문에 매우 제한적 효과를 보이며, 이것은 병원균의 작은 변이에도 파지의 민감성은 크게 감소할 수 있기 때문이다. 본 연구에서는 파지테라피의 효용성을 높이기 위하여 갈반병의 원인균인 P. tolaasii 균주로부터 파지-저항성 변이주를 분리하였고 병원성 특성을 조사하였다. 16S rRNA 유전자의 염기서열 분석을 통한 근연관계 분석에서 파지저항성 균주들은 모두 원래의 숙주균과 일치하였고, 용혈활성이나 갈반형성 능력 등 병원성은 파지저항성 획득과 관련이 없는 것으로 확인되었다. 그럼에도 불구하고, 파지저항성 균주의 다양한 병원성은 균의 종류에 따라 증감이 다르게 나타났다. 따라서, 성공적인 파지테라피를 위해서는 넓은 숙주 범위를 갖는 파지의 분리가 필요하다.

Isolation and characterization of bacteriophage infecting Lactobacillus plantarum KCCM 12116

  • Oh, Jiyoung;Park, Jong-Hyun
    • 한국식품과학회지
    • /
    • 제53권3호
    • /
    • pp.348-355
    • /
    • 2021
  • Bacteriophages (phages) are known determinants of kimchi microbial ecology. Lactobacillus plantarum is related to kimchi over-acidification during the late stages of kimchi fermentation. A phage infecting Lac. plantarum was isolated from kimchi and characterized. The phage population for kimchi in a market was 2.3 log particles/mL, which corresponded to 32% of the bacterial population on a log scale. The isolated phage was designated as ΦLP12116. ΦLP12116 which belonged to the Siphoviridae family and has a very narrow host range, infecting only Lac. plantarum. The phage was stable at a lactic acid concentration of 1.0% and pH 4.0 at 4℃, indicating that it could survive in kimchi. In the kimchi extract broth treated by the phage, the growth of Lac. plantarum KCCM 12116 was inhibited by 2.2 log CFU/mL compared to the growth in non-phage-treated broth. Therefore, this study suggests that the growth of Lac. plantarum, which is known as an acid-producing strain during late fermentation in kimchi, may be controlled using the phage.

Characterization of Phage Behaviors Against Antibiotic-Resistant Salmonella Typhimurium

  • Easwaran, Maheswaran;Ahn, Juhee
    • 한국식품위생안전성학회지
    • /
    • 제35권6호
    • /
    • pp.602-606
    • /
    • 2020
  • 본 연구는 다양한 항생제 내성을 갖는 Salmonella enterica subsp. enterica serovar Typhimurium ATCC 19585 (STWT), S. Typhimurium KCCM 40253 (STKCCM), ciprofloxacininduced S. Typhimurium ATCC 19585 strains (STCIP), and S. Typhimurium CCARM 8009 (STCCARM)에 대한 phage의 흡착 및 용균 특성을 평가하였다. PBST-10, PBST-13, PBST-32, PBST-35, P-22, P-22 B1 phages는 narrow host range를 보였다. 숙주인 STWT, STKCCM, STCIP에 대한 phage의 흡착률은 각각 47-85%, 58-95%, 61-93%였지만, STCCARM에 대한 phage의 흡착률은 14-36%의 낮은 수준을 보였다. STWT, STKCCM, STCIP, STCCARM에 대한 phage burst size는 각각 43-350, 37-530, 66-500, 24-500 plaque-forming unit(PFU)으로 다양하게 관찰되었다. P-22 B1을 제외한 모든 phage는 배양 초기에 STCIP숙주를 효과적으로 저해하였다. 이러한 결과는 항생제 내성균을 저해하기 위해 phage control system 개발에 유용한 정보로 활용될 것이다.

Vibrio parahaemolyticus의 Phage에 관한 연구 (Studies on the Phage of Vibrio parahaemolyticus)

  • 주진우;이기희;김일
    • 대한미생물학회지
    • /
    • 제22권1호
    • /
    • pp.61-70
    • /
    • 1987
  • Authors have isolated phages of V. parahaemolyticus from shellfish and investigated some of their characteristics. The results obtained were as follows: Twenty-three phage strains(9.2%) out of 250 specimens were isolated. Plaques of phages were small, clear or turbid and $0.5{\sim}1.5mm$ in diameter. The electron micrographs of K3 phages showed two morphology; one was a hexagonal head about 105nm with a tail about 12nm, the other was a hexagonnal head about 60nm with a tail about 25nm. The host ranges of pahges were limited to V. parahaemolyticus strains and there appeared to be no relationship between the K serotypes of V. parahaemolyticus strains and the host ranges of the phage isolates. The adsorption rate of phages were more than 80% for $10{\sim}15$ minutes, the inactivation rate at $60^{\circ}C$ was more than 99% for $40{\sim}45$ minutes. The pH stability range was between 6.0 and 8.0. The inactivation rate of phages by UV irradiation was more than 99% for $45{\sim}75$ seconds.

  • PDF

L-글루타민산 생산균 Brevibacterium lactofermentum의 Bacteriophag에 관한 연구 (Studies on the Bacteriophages of Brevibacterium lactofermentum)

  • 이태우
    • 미생물학회지
    • /
    • 제17권3호
    • /
    • pp.97-130
    • /
    • 1979
  • Many industrial processes those employ bacteria are subjected to phage infestations. In L-glutamic acid fermentions using acetic acid, the phage infestations of the organisms have been recently recognized. In efforts to elucidate the sources of phage contamination involved in the abnormal fermentation, a series of study was conducted to isolate the phages both from the contents of abnormally fermented tanks and the soil or sewage samples from the surroundings of a fermentation factory, to define major charateristics of the phage isolates, and finally to determine the correlation between the phage isolates and temperate phages originating from the miscellaneous bacterial species isolated from the soil or sewage samples. The results are summarized as follows; 1) All phages were isolated from the irregular fermentation tanks and soil or sewage samples, and they were designated as phage PR-1, PR-2, PR-3, PR-4, PR-5, PR-6, and PR-7, in the order of isolation. These PR-series phages were proved to be highly specific for the variant strains of Br. lactofermentum only, namely, phage PR-1 and PR-2 for Br. lactofermentum No. 468-5 and phage PR-3~PR-7 for Br. lactofemrentum No. 2256. By cross-neutralization test, the 7 phagescould be subdivided into 3 groups, i. e., phage PR-I and PR-2 the first, phage PR-3, PR-4, PR-5, PR-6 the second, and the phage PR-7 the third. 2) The 7 phages were virulent under the experimental conditions. They produced plaques with clear and relatively sharp margins without distinct halo. The mean sizes of plaques were 1.5mm in diameter for phage PR-1 and PR-2, and 1. Omm for phages PR-3~PR-7. Double layer technique modified by Hongo and described by Adams, was applied to assay of the PR-series phages. The factors influencing the plaques were as follows;young age cells of host bacteria cultured for 3-6 hours represented the largest number and size, optimum was pH 7.0, incubation temperature was $30^{\circ}C$, and agar concentration and amount of overlayer medium were 0.6% and 0.2ml, respectively. 3) PR-series phages were stable in 0.05M tris buffer and 0.1M ammonium acetate buffer solution. The addition of $5{\times}10^{-3}M$ magnesium ion effectively increased the stability. Thermostability experiments indicated that PR-series phages were stable at the teinperture between $50^{\circ}{\sim}55^{\circ}C$ in nutrient medium, $45^{\circ}{\sim}50^{\circ}C$ in buffer solution. However, the phages mere completely inactivated at 603C and 65$^{\circ}$C within 10 minutes. The phages were stable at the range of pH6~9 in nutrient medium and of pH 8-9 in buffer solution, respectively. Exposure of the phages to UV for 25, 60 and 100 seconds resulted in the complete loss of infectivily, respectively. 4) Electron microscopy showed that PR-series phage particles exhibited rather similar morphology, differing in the size All of PR-series phages had a multilateral head and had a simple long tiil about three to five times long as compared with head. By the size, phage PR-1 and PR-2, PR-3, PR-4, PR-5, and PR-6 and PR-7 were classified into same groups, respectively. The head and tail size of phage PR-1, PR-5, PR-5(T) and PR-7 were 85nm, 74nm and 235nm and 350mm, and 72nm and 210nm, respectively. 5) Nucleic acids of PR-series phages were double stranded DNA. The G+C contents of phage PR-1, PR-5 and PR-7 were 56.1, 52.9 and 53.7, respectively. The values of G+C contents derived from the $T_m$ were in agreement with the chemically determined values. 6) PR-series phages effectively adsorbed on their host bacteria at the rate of more than 90% during 5 min. K value for phage PR-1, PR-5 and PR-7 were calculated to be $6{\times}10^9 ml$ per minute, respectiveky. The pH of the medium did effect adsorption rate, but both temperature and age of host cells did not. Generally, optimum adsorption condition of phages seemed to be almost same as optimum growth conditions of host bacteria. 7) In one-step growth experiments, the latent periods at $30^{\circ}C$ for PR-1, and PR-7 were about 70, 50 and 55 min, respectively. The corresponding average burst size was 200, 70 and 90, respectively. Lpsis period according to the multiplicity of infection and a phage series. In case of m. o. i. 100, strain No. 2256 (PR-5) and No. 468-5(PR-1) failed to grow and turbidity decreased after 50 and 70min, respectively. 8) In the lysate of a plaque purified phage PR-5 infected bacteria, there observed 2 types ofphage particles, i. e., phage PR-5 and PR-5 (T) of similar morphology but differing at the length of phage tail, and phage tail like particles. The phage taillike particles could be divided into 4 types by the length. Induction experiments of Br. lactofermentum with UV irradiation, mitomycin C or bacitracin treatment produced neither phage PR-5 (T) or phage tail-like particles. 9) No lysis occured when the growth of 7 strains of miscellaneous bacteria, isolated from soil and sewage samples, were inoculated with either phage PR-5 (T) or phage tail-like particles the inoculation of phage PR-5 pellet resulted in the growth inhibition of the orgainsms in the spot test. The lysates obtained from 3 miscellaneous soil derived bacteria following mitomycin C treatment the growth of Br. lactofermentum, but did not lyze the bacterium.

  • PDF

Optimization of the Bacteriophage Cocktail for the Prevention of Brown Blotch Disease Caused by Pseudomonas tolaasii

  • Yun, Yeong-Bae;Um, Yurry;Kim, Young-Kee
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.472-481
    • /
    • 2022
  • Brown blotch disease, caused by Pseudomonas tolaasii, is one of the most serious diseases in mushroom cultivation, and its control remains an important issue. This study isolated and evaluated pathogen-specific bacteriophages for the biological control of the disease. In previous studies, 23 varieties of P. tolaasii were isolated from infected mushrooms with disease symptoms and classified into three subtypes, Ptα, Ptβ, and Ptγ, based on their 16S rRNA gene sequences analysis and pathogenic characters. In this study, 42 virulent bacteriophages were isolated against these pathogens and tested for their host range. Some phages could lyse more than two pathogens only within the corresponding subtype, and no phage exhibited a wide host range across different pathogen subtypes. To eliminate all pathogens of the Ptα, Ptβ, and Ptγ subtype, corresponding phages of one, six, and one strains were required, respectively. These phages were able to suppress the disease completely, as confirmed by the field-scale on-farm cultivation experiments. These results suggested that a cocktail of these eight phages is sufficient to control the disease induced by all 23 P. tolaasii pathogens. Additionally, the antibacterial effect of this phage cocktail persisted in the second cycle of mushroom growth on the cultivation bed.

Endosymbionts and Phage WO Infections in Korean ant Species (Hymenoptera: Formicidae)

  • Park, Soyeon;Noh, Pureum;Kang, Jae-Yeon
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제1권1호
    • /
    • pp.52-57
    • /
    • 2020
  • Bacterial symbionts are common across insects, including ants (Hymenoptera: Formicidae). Reproduction-manipulating endosymbionts, such as Wolbachia, Spiroplasma, Rickettsia, and Cardinium, are closely associated with many aspects of host-insect life. In addition, phage WO plays an essential role in the phenotypic effects of Wolbachia. Although endosymbionts are possible biological control agents, there is a lack of knowledge of their rate of infection of ants in Korea. We tested a range of Korean ant species for the presence of Wolbachia, Spiroplasma, Rickettsia, Cardinium, and phage WO by extracting DNA from the ants and using specific primer sets to test the status of infections. In addition, the mitochondrial cytochrome c oxidase I (COI) gene of the host ants was amplified to confirm the molecular identification and phylogenetic relationship between the hosts. We found that infection with Wolbachia (29.6% of species) is relatively common when compared with that of other endosymbionts. Only one species was infected with Spiroplasma. Infection with Rickettsia and Cardinium was not detected in the examined ants. Most Wolbachia in ants were infected with phage WO. Although the phenotypic effects of endosymbionts in ants are still unknown, this first survey of endosymbionts in Korea is the first step toward the use of reproduction-manipulating endosymbionts.