DOI QR코드

DOI QR Code

Characterization of Phage Behaviors Against Antibiotic-Resistant Salmonella Typhimurium

  • Easwaran, Maheswaran (Department of Biomedical Science, Kangwon National University) ;
  • Ahn, Juhee (Department of Biomedical Science, Kangwon National University)
  • Received : 2020.10.16
  • Accepted : 2020.11.24
  • Published : 2020.12.30

Abstract

This study was designed to investigate the dynamic behaviors of phages against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 19585 (STWT), S. Typhimurium KCCM 40253 (STKCCM), ciprofloxacin-induced S. Typhimurium ATCC 19585 strains (STCIP), and S. Typhimurium CCARM 8009 (STCCARM). Phages, including PBST-10, PBST-13, PBST-32, PBST-35, P-22, and P-22 B1 had narrow host ranges. The adsorption rates of all phages ranged from 47 to 85%, 58 to 95%, and 61 to 93%, respectively, against STWT, STKCCM, and STCIP, while the lowest adsorption rates ranged from 14 to 36% against STCCARM. The phage burst sizes were from 43 to 350, 37 to 530, 66 to 500, and 24 to 500 plaque-forming units (PFUs) per infected STWT, STKCCM, STCIP, and STCCARM, respectively. The STCIP strain was effectively inhibited by all phages at the early of incubation period. These results provide useful information for better understanding the phage behaviors against antibiotic-resistant and antibiotic-sensitive pathogens.

본 연구는 다양한 항생제 내성을 갖는 Salmonella enterica subsp. enterica serovar Typhimurium ATCC 19585 (STWT), S. Typhimurium KCCM 40253 (STKCCM), ciprofloxacininduced S. Typhimurium ATCC 19585 strains (STCIP), and S. Typhimurium CCARM 8009 (STCCARM)에 대한 phage의 흡착 및 용균 특성을 평가하였다. PBST-10, PBST-13, PBST-32, PBST-35, P-22, P-22 B1 phages는 narrow host range를 보였다. 숙주인 STWT, STKCCM, STCIP에 대한 phage의 흡착률은 각각 47-85%, 58-95%, 61-93%였지만, STCCARM에 대한 phage의 흡착률은 14-36%의 낮은 수준을 보였다. STWT, STKCCM, STCIP, STCCARM에 대한 phage burst size는 각각 43-350, 37-530, 66-500, 24-500 plaque-forming unit(PFU)으로 다양하게 관찰되었다. P-22 B1을 제외한 모든 phage는 배양 초기에 STCIP숙주를 효과적으로 저해하였다. 이러한 결과는 항생제 내성균을 저해하기 위해 phage control system 개발에 유용한 정보로 활용될 것이다.

Keywords

References

  1. Sommer, M.O.A., Munck, C., Toft-Kehler, R.V., Andersson, D.I., Prediction of antibiotic resistance: time for a new preclinical paradigm?. Nat. Rev. Microbiol., 15, 689 (2017). https://doi.org/10.1038/nrmicro.2017.75
  2. Procaccianti, M., Motta, A., Giordani, S., Riscassi, S., Guidi, B., Ruffini, M., Maffini, V., Esposito, S., Dodi, I., First case of typhoid fever due to extensively drug-resistant Salmonella enterica serovar typhi in Italy. Pathogens (Basel, Switzerland), 9, 151 (2020). https://doi.org/10.3390/pathogens9020151
  3. Kim, J., Ahn, J., Characterization of clinically isolated antibiotic-resistant Salmonella Typhimurium exposed to subinhibitory concentrations of ceftriaxone and ciprofloxacin Microb. Drug Resist., 23, 949-957 (2017). https://doi.org/10.1089/mdr.2016.0319
  4. Peng, M., Salaheen, S., Buchanan, R.L., Biswas, D., Alterations of Salmonella enterica serovar Typhimurium antibiotic resistance under environmental pressure. Appl. Environ. Microbiol., 84, e01173-01118 (2018).
  5. Romero-Calle, D., Guimaraes Benevides, R., Goes-Neto, A., Billington, C., Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics, 8, 138 (2019). https://doi.org/10.3390/antibiotics8030138
  6. Chan, B.K., Abedon, S.T., Loc-Carrillo, C., Phage cocktails and the future of phage therapy. Future Microbiol., 8, 769-783 (2013). https://doi.org/10.2217/fmb.13.47
  7. Tawil, N., Sacher, E., Mandeville, R., Meunier, M., Bacteriophages: biosensing tools for multi-drug resistant pathogens. Analyst, 139, 1224-1236 (2014). https://doi.org/10.1039/c3an01989f
  8. Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., Novik, G.I., Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish J. Microbiol., 59, 145-155 (2010). https://doi.org/10.33073/pjm-2010-023
  9. Le, S., He, X., Tan, Y., Huang, G., Zhang, L., Lux, R., Shi, W., Hu, F., Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One, 8, e68562 (2013). https://doi.org/10.1371/journal.pone.0068562
  10. Chaturongakul, S., Ounjai, P., Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front. Microbiol., 5, 442 (2014).
  11. Michea-Hamzehpour, M., Kahr, A., Pechere, J.C., In vitro stepwise selection of resistance to quinolones, β-lactams and amikacin in nosocomial gram-negative bacilli. Infection, 22, S105-S110 (1994). https://doi.org/10.1007/BF01793574
  12. Bielke, L., Higgins, S., Donoghue, A., Donoghue, D., Hargis, B.M., Salmonella host range of bacteriophages that infect multiple genera. Poult. Sci., 86, 2536-2540 (2007). https://doi.org/10.3382/ps.2007-00250
  13. Jung, L.-s., Ding, T., and Ahn, J., Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium. Ann. Clin. Microbiol. Antimicrob., 16, 66 (2017). https://doi.org/10.1186/s12941-017-0237-6
  14. Lu, Z., Breidt Jr, F., Fleming, H.P., Altermann, E., Klaenhammer, T.R., Isolation and characterization of a Lactobacillus plantarum bacteriophage, fJL-1, from a cucumber fermentation. Int. J. Food Microbiol., 84, 225-235 (2003). https://doi.org/10.1016/S0168-1605(03)00111-9
  15. Zhang, C., Li, W., Liu, W., Zou, L., Yan, C., Lu, K., Ren, H., T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl. Environ. Microbiol., 79, 5559-5565 (2013). https://doi.org/10.1128/AEM.01505-13
  16. Ross, A., Ward, S., Hyman, P., More is better: Selecting for broad host range bacteriophages. Front. Microbiol., 7, 1352 (2016).
  17. Goerke, C., Koller, J., Wolz, C., Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agent. Chemother., 50, 171-177 (2006). https://doi.org/10.1128/AAC.50.1.171-177.2006
  18. van Hoek, A.H.A.M., Mevius, D., Guerra, B., Mullany, P., Roberts, A.P., Aarts, H.J.M., Acquired antibiotic resistance genes: An overview. Front. Microbiol., 2, 203 (2011). https://doi.org/10.3389/fmicb.2011.00203
  19. Kim, J., Jo, A., Ding, T., Lee, H.-Y., Ahn, J., Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium. Arch. Microbiol., 198, 521-529 (2016). https://doi.org/10.1007/s00203-016-1210-z
  20. van den Beld, M.J.C., Reubsaet, F.A.G., Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis., 31, 899-904 (2012). https://doi.org/10.1007/s10096-011-1395-7
  21. Easwaran, M., Paudel, S., De Zoysa, M., Shin, H.J., Functional characterization of a novel lytic phage EcSw isolated from Sus scrofa domesticus and its potential for phage therapy. Mol. Cell Probes, 29, 151-157 (2015). https://doi.org/10.1016/j.mcp.2015.03.004
  22. Muller-Merbach, M., Kohler, K., Hinrichs, J., Environmental factors for phage-induced fermentation problems: Replication and adsorption of the Lactococcus lactis phage P008 as influenced by temperature and pH. Food Microbiol., 24, 695-702 (2007). https://doi.org/10.1016/j.fm.2007.04.003
  23. Javed, M.A., Poshtiban, S., Arutyunov, D., Evoy, S., Szymanski, C.M., Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One, 8, e69770 (2013). https://doi.org/10.1371/journal.pone.0069770
  24. Hyman, P., Abedon, S.T., Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol., 70, 217-248 (2010). https://doi.org/10.1016/S0065-2164(10)70007-1
  25. Uddin, M.J., Ahn, J., Associations between antibiotic resistance and bacteriophage resistance phenotypes in laboratory and clinical strains of Salmonella enterica subsp. enterica serovar Typhimurium. Microb. Pathogen., 143, 104159 (2020). https://doi.org/10.1016/j.micpath.2020.104159