References
- Sommer, M.O.A., Munck, C., Toft-Kehler, R.V., Andersson, D.I., Prediction of antibiotic resistance: time for a new preclinical paradigm?. Nat. Rev. Microbiol., 15, 689 (2017). https://doi.org/10.1038/nrmicro.2017.75
- Procaccianti, M., Motta, A., Giordani, S., Riscassi, S., Guidi, B., Ruffini, M., Maffini, V., Esposito, S., Dodi, I., First case of typhoid fever due to extensively drug-resistant Salmonella enterica serovar typhi in Italy. Pathogens (Basel, Switzerland), 9, 151 (2020). https://doi.org/10.3390/pathogens9020151
- Kim, J., Ahn, J., Characterization of clinically isolated antibiotic-resistant Salmonella Typhimurium exposed to subinhibitory concentrations of ceftriaxone and ciprofloxacin Microb. Drug Resist., 23, 949-957 (2017). https://doi.org/10.1089/mdr.2016.0319
- Peng, M., Salaheen, S., Buchanan, R.L., Biswas, D., Alterations of Salmonella enterica serovar Typhimurium antibiotic resistance under environmental pressure. Appl. Environ. Microbiol., 84, e01173-01118 (2018).
- Romero-Calle, D., Guimaraes Benevides, R., Goes-Neto, A., Billington, C., Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics, 8, 138 (2019). https://doi.org/10.3390/antibiotics8030138
- Chan, B.K., Abedon, S.T., Loc-Carrillo, C., Phage cocktails and the future of phage therapy. Future Microbiol., 8, 769-783 (2013). https://doi.org/10.2217/fmb.13.47
- Tawil, N., Sacher, E., Mandeville, R., Meunier, M., Bacteriophages: biosensing tools for multi-drug resistant pathogens. Analyst, 139, 1224-1236 (2014). https://doi.org/10.1039/c3an01989f
- Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., Novik, G.I., Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish J. Microbiol., 59, 145-155 (2010). https://doi.org/10.33073/pjm-2010-023
- Le, S., He, X., Tan, Y., Huang, G., Zhang, L., Lux, R., Shi, W., Hu, F., Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One, 8, e68562 (2013). https://doi.org/10.1371/journal.pone.0068562
- Chaturongakul, S., Ounjai, P., Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front. Microbiol., 5, 442 (2014).
- Michea-Hamzehpour, M., Kahr, A., Pechere, J.C., In vitro stepwise selection of resistance to quinolones, β-lactams and amikacin in nosocomial gram-negative bacilli. Infection, 22, S105-S110 (1994). https://doi.org/10.1007/BF01793574
- Bielke, L., Higgins, S., Donoghue, A., Donoghue, D., Hargis, B.M., Salmonella host range of bacteriophages that infect multiple genera. Poult. Sci., 86, 2536-2540 (2007). https://doi.org/10.3382/ps.2007-00250
- Jung, L.-s., Ding, T., and Ahn, J., Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium. Ann. Clin. Microbiol. Antimicrob., 16, 66 (2017). https://doi.org/10.1186/s12941-017-0237-6
- Lu, Z., Breidt Jr, F., Fleming, H.P., Altermann, E., Klaenhammer, T.R., Isolation and characterization of a Lactobacillus plantarum bacteriophage, fJL-1, from a cucumber fermentation. Int. J. Food Microbiol., 84, 225-235 (2003). https://doi.org/10.1016/S0168-1605(03)00111-9
- Zhang, C., Li, W., Liu, W., Zou, L., Yan, C., Lu, K., Ren, H., T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl. Environ. Microbiol., 79, 5559-5565 (2013). https://doi.org/10.1128/AEM.01505-13
- Ross, A., Ward, S., Hyman, P., More is better: Selecting for broad host range bacteriophages. Front. Microbiol., 7, 1352 (2016).
- Goerke, C., Koller, J., Wolz, C., Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agent. Chemother., 50, 171-177 (2006). https://doi.org/10.1128/AAC.50.1.171-177.2006
- van Hoek, A.H.A.M., Mevius, D., Guerra, B., Mullany, P., Roberts, A.P., Aarts, H.J.M., Acquired antibiotic resistance genes: An overview. Front. Microbiol., 2, 203 (2011). https://doi.org/10.3389/fmicb.2011.00203
- Kim, J., Jo, A., Ding, T., Lee, H.-Y., Ahn, J., Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium. Arch. Microbiol., 198, 521-529 (2016). https://doi.org/10.1007/s00203-016-1210-z
- van den Beld, M.J.C., Reubsaet, F.A.G., Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis., 31, 899-904 (2012). https://doi.org/10.1007/s10096-011-1395-7
- Easwaran, M., Paudel, S., De Zoysa, M., Shin, H.J., Functional characterization of a novel lytic phage EcSw isolated from Sus scrofa domesticus and its potential for phage therapy. Mol. Cell Probes, 29, 151-157 (2015). https://doi.org/10.1016/j.mcp.2015.03.004
- Muller-Merbach, M., Kohler, K., Hinrichs, J., Environmental factors for phage-induced fermentation problems: Replication and adsorption of the Lactococcus lactis phage P008 as influenced by temperature and pH. Food Microbiol., 24, 695-702 (2007). https://doi.org/10.1016/j.fm.2007.04.003
- Javed, M.A., Poshtiban, S., Arutyunov, D., Evoy, S., Szymanski, C.M., Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One, 8, e69770 (2013). https://doi.org/10.1371/journal.pone.0069770
- Hyman, P., Abedon, S.T., Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol., 70, 217-248 (2010). https://doi.org/10.1016/S0065-2164(10)70007-1
- Uddin, M.J., Ahn, J., Associations between antibiotic resistance and bacteriophage resistance phenotypes in laboratory and clinical strains of Salmonella enterica subsp. enterica serovar Typhimurium. Microb. Pathogen., 143, 104159 (2020). https://doi.org/10.1016/j.micpath.2020.104159