• Title/Summary/Keyword: Petrov-Galerkin method

Search Result 48, Processing Time 0.025 seconds

Optimal Test Function Petrov-Galerkin Method (최적시행함수 Petrov-Galerkin 방법)

  • Sung-Uk Choi
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.599-612
    • /
    • 1998
  • Numerical analysis of convection-dominated transport problems are challenging because of dual characteristics of the governing equation. In the finite element method, a strategy is to modify the test function to weight more in the upwind direction. This is called as the Petrov-Galerkin method. In this paper, both N+1 and N+2 Petrov-Galerkin methods are applied to transport problems at high grid Peclet number. Frequency fitting algorithm is used to obtain optimal levels of N+2 upwinding, and the results are discussed. Also, a new Petrov-Galerkin method, named as "Optimal Test Function Petrov-Galerkin Method," is proposed in this paper. The test function of this numerical method changes its shape depending upon relative strength of the convection to the diffusion. A numerical experiment is carried out to demonstrate the performance of the proposed method.

  • PDF

Markov Chain Model for Synthetic Generation by Classification of Daily Precipitaion Amount into Multi-State (강수계열의 상태분류에 의한 Markov 연쇄 모의발생모형)

  • Kim, Ju-Hwan;Park, Chan-Yeong
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.155-166
    • /
    • 1996
  • A finite element model for simulating gradually and rapidly varied unsteady flow in open channel is developed based on dynamic wave equation using Petrov-Galerkin method. A matrix stability analysis shows the selective damping of short wave lengths and excellent phase accuracies achived by Petrov-Galerkin method. Whereas the Preissmann scheme displays less selective damping and poor phase accuracies, and Bubnov-Galerkin method shows nondissipative characteristics whicn causes a divergence problem in short wave length. The analysis also shows that the Petrov-Galerkin method displays the desirable combination of selective damping of high frequency progressive waves over a wide range of Courant number and good phase accuracy at low Courant number. Therefore, the Petrov-Galerkin can be effectively applied to gradually and rapidly varied unsteady flow.

  • PDF

PETROV-GALERKIN METHOD FOR NONLINEAR SYSTEM

  • Wang, Yuan-ming;Guo, Ben-yu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.61-71
    • /
    • 1998
  • Petrov-Galerkin method is investigated for solving nonlinear systems without monotonicity. A monotone iteration is provided for solving the resulting problem. The numerical results show the advantages of such method.

  • PDF

A Petrov-Galerkin Natural Element Method Securing the Numerical Integration Accuracy

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.94-109
    • /
    • 2006
  • An improved meshfree method called the Petrov-Galerkin natural element (PG-NE) method is introduced in order to secure the numerical integration accuracy. As in the Bubnov-Galerkin natural element (BG-NE) method, we use Laplace interpolation function for the trial basis function and Delaunay triangles to define a regular integration background mesh. But, unlike the BG-NE method, the test basis function is differently chosen, based on the Petrov-Galerkin concept, such that its support coincides exactly with a regular integration region in background mesh. Illustrative numerical experiments verify that the present method successfully prevents the numerical accuracy deterioration stemming from the numerical integration error.

PRECONDITIONED ITERATIVE METHOD FOR PETROV-GALERKIN PROCEDURE

  • Chung, Seiyoung;Oh, Seyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.57-70
    • /
    • 1997
  • In this paper two preconditioned GMRES and QMR methods are applied to the non-Hermitian system from the Petrov-Galerkin procedure for the Poisson equation and compared to each other. To our purpose the ILUT and the SSOR preconditioners are used.

  • PDF

A PETROV-GALERKIN METHOD FOR A SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITH NON-SMOOTH DATA

  • Zheng T.;Liu F.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.317-329
    • /
    • 2006
  • In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.

The Petrov-Galerkin Natural Element Method : I. Concepts (페트로프-갤러킨 자연요소법 : I. 개념)

  • Cho, Jin-Rae;Lee , Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2005
  • In this paper, a new meshfree technique which improves the numerical integration accuracy is introduced. This new method called thc Petrov-Galerkin natural clement method(PG-NEM) by authors is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used lot conventional natural clement method called the Bubnov-Galerkin natural element method(BG-NEM). But, unlike the BG-NEM, the test basis function is differently chosen, based on the concept of Petrov-Galerkin, such that its support coincides exactly with a regular integration region in background mesh. Therefore, it is expected that the proposed technique ensures the remarkably improved numerical integration accuracy in comparison with the BG-NEM.

Nonlinear Dynamic Analysis using Petrov-Galerkin Natural Element Method (페트로프-갤러킨 자연요소법을 이용한 비선형 동해석)

  • Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.474-479
    • /
    • 2004
  • According to our previous study, it is confirmed that the Petrov-Galerkin natural element method (PGNEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem.

  • PDF

Study on the Finite Element Discretization of the Level Set Redistancing Algorithm (Level Set Redistancing 알고리즘의 유한요소 이산화 기법에 대한 연구)

  • Kang Sungwoo;Yoo Jung Yul;Lee Yoon Pyo;Choi HyoungGwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.703-710
    • /
    • 2005
  • A finite element discretization of the advection and redistancing equations of level set method has been studied. It has been shown that Galerkin spatial discretization combined with Crank-Nicolson temporal discretization of the advection equation of level set yields a good result and that consistent streamline upwind Petrov-Galerkin(CSUPG) discretization of the redistancing equation gives satisfactory solutions for two test problems while the solutions of streamline upwind Petrov-Galerkin(SUPG) discretization are dissipated by the numerical diffusion added for the stability of a hyperbolic system. Furthermore, it has been found that the solutions obtained by CSUPG method are comparable to those by second order ENO method.

Study on the Natural Element Method using Petrov-Galerkin Concepts (페트로프-갤러킨 개념에 기초한 자연요소법에 관한 연구)

  • Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1274-1279
    • /
    • 2003
  • In this paper, a new meshfree technique which improves the numerical integration accuracy is introduced. This new method called the Petrov-Galerkin natural element(PG-NE) is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used for conventional natural element method called the Bubnov-Galerkin natural element(BG-NE). But, unlike BG-NE method, the test shape function is differently chosen from the trial shape function. The proposed technique ensures that the numerical integration error is remarkably reduced.

  • PDF